<u>Analysing the Question:</u>
We are given a 250 mL solution of 0.5M K₂Cr₂O₇
Which means that we have:
0.5 Mole in 1L of the solution
0.125 moles in 250 mL of the solution <em>[dividing both the numbers by 4]</em>
<em />
<u>Mass of K₂Cr₂O₇ in the given solution:</u>
Molar mass of K₂Cr₂O₇(Potassium Dichromate) = 194 g/mol
<em>we know that we have 0.125 moles in the 250 mL solution provided</em>
Mass = Number of moles * Molar mass
Mass = 0.125 * 194
Mass = 36.75 grams
Answer:
the valence of S is -2. For FeS to be neutral the valence of Fe used must be +2
and since Iron (II) has its valency 2, FeS will be Iron (II) Sulfide.
Answer:
1) volumetric
2) graduated
3) volumetric
Explanation:
A volumetric glassware is a glassware that is marked at a particular point. A typical example of a volumetric glassware is the volumetric flask. A volumetric glassware is capable of measuring only a specific volume of a liquid.
On the other hand, graduated glassware can measure a range of volumes of liquid. However, a volumetric glassware is still required where a high degree of accuracy is important.
The equation that scientists could use to find the wavelength of the emission lines of the hydrogen atom would be that of Balmer.
The wavelength of the emission lines of the hydrogen atom can be derived using the Balmer series:
1/λ
Where λ = wavelength, = Rydberg constant, and n = level of the original orbital.
The equation becomes applicable in getting the wavelength of emitted light when electrons in hydrogen atoms transition from higher (n) orbital to lower orbital (2) levels.
More on the Balmer series can be found here: brainly.com/question/5295294
Hydrogen peroxide is H2O2, while water is H2O and oxygen (a diatomic gas) is O2. The (unbalanced) reaction is:
H2O2 --> H2O + O2
Notice that the H2O2 has 2 H atoms, and so does H2. This means that both must have the same coefficients, and we can adjust the coefficient of O2. Since H2O2 has 2 O atoms, and H2O has 1, we multiply O2 by 1/2:
H2O2 --> H2O + (1/2)O2
This has an equivalent number of H and O atoms on either side, but we want the coefficients to be whole numbers, so we multiply everything by 2:
2H2O2 --> 2H2O + O2