Answer:
4.384 * 10^13
Explanation:
Given the expression :
[(6.67 * 10^-11) * (1.99 * 10^30)] ÷ [(1.74*10^3)*(1.74*10^3)]
Applying the laws of indices
[(6.67 * 1.99) *10^(-11 + 30)] ÷ [(1.74 * 1.74) * 10^3+3]
13.2733 * 10^19 ÷ 3.0276 * 10^6
(13.2733 / 3.0276) * 10^(19 - 6)
4.3840996 * 10^13
= 4.384 * 10^13
Answer:
<em>The internal energy change is 330.01 J</em>
Explanation:
Given
the initial volume = 5.75 L
the final volume = 1.23 L
is the external pressure = 1.00 atm
q the heat energy removed = -128 J (since is removed from the system)
expansion against a constant external pressure is an example of an irreversible pathway, here pressure in is greater than pressure out and can be obtained thus;
W = -
ΔV
W = -1.00 x(1.23 - 5.75)
W = -1.00 x -4.52
W = 4.52 L atm
converting to joules we have
W = 4.52 L atm x 101.33 J/ L atm = 458.01 J
The internal energy change during compression can be calculated thus;
ΔU = q + W
ΔU = -128 J + 458.01 J
ΔU = 330.01 J
Therefore the internal energy change is 330.01 J
Answer:
I = 0.25 [amp]
Explanation:
To solve this problem we must use ohm's law which tells us that the voltage is equal to the product of the current by the resistance.
V = I*R
where:
V = voltage [Volt]
I = amperage or current [amp]
R = resistance [ohm]
Since all resistors are connected in series, the total resistance will be equal to the arithmetic sum of all resistors.
Rt = 2 + 8 + 14
Rt = 24 [ohm]
Now clearing I for amperage
I = V/Rt
I = 6/24
I = 0.25 [amp].
Answer:
The north pole has the strongest magnetic force