A cell will reproduce on its own
The solution for this problem:
Given:
f1 = 0.89 Hz
f2 = 0.63 Hz
Δm = m2 - m1 = 0.603 kg
The frequency of mass-spring oscillation is:
f = (1/2π)√(k/m)
k = m(2πf)²
Then we know that k is constant for both trials, we have:
k = k
m1(2πf1)² = m2(2πf2)²
m1 = m2(f2/f1)²
m1 = (m1+Δm)(f2/f1)²
m1 = Δm/((f1/f2)²-1)
m 1 = 0.603/
(0.89/0.63)^2 – 1
= 0.609 kg or 0.61kg or 610 g
Answer:
78.4 KN/m
Explanation:
Given
mass of person 'm' =80 kg
car dips about i.e spring stretched 'x'= 1 cm => 0.01m
acceleration due to gravity 'g'= 9.8 m/s^2
as we know that,in order to find approximate spring constant we use Hooke's Law i.e F=kx
where,
F = the force needed
x= distance the spring is stretched or compressed beyond its natural length
k= constant of proportionality called the spring constant.
F=kx
---> (since f=mg)
mg=kx
k=(mg)/x
k=(80 x 9.8)/ 0.01
k=78.4x
k=78.4 KN/m
The centripetal force, Fc, is calculated through the equation,
Fc = mv²/r
where m is the mass,v is the velocity, and r is the radius.
Substituting the known values,
Fc = (112 kg)(8.9 m/s)² / (15.5 m)
= 572.36 N
Therefore, the centripetal force of the bicyclist is approximately 572.36 N.
Answer: True.
Explanation:
A resistance force is also known as friction. And the efficiency of a machine is affected by friction.
A machine of lower efficiency has higher magnitude of friction than a machine of higher efficiency.
Therefore, To obtain the same resistance force, a greater force must be exerted in a machine of lower efficiency than in a machine of higher efficiency. This is true