Answer:
(CH2)3CH3 > CH2CH2CH3 > CH2CH3 > CH3
Explanation:
Giving the following ; CH3, CH2CH3, CH2CH2CH3, (CH2)3CH3
Priority increases as the number of CH2 group increases and vice versa, as such the one with more CH2 group will be the highest priority and the least compound with the small CH2 group attached, will have the smallest priority.
The arrangement is as follows ; (CH2)3CH3 > CH2CH2CH3 > CH2CH3 > CH3
Volume = nRT/P
n = number of particles (moles)
R = universal gas constant (0.0821)
T = temperature (Kelvin)
P = pressure (atm)
(Assuming you have 1 mole of Helium in a chemical reaction) We would need to convert grams to moles: 12.0g He x 1 mol He/4 molar mass of He = 3 mol He
Convert Celsius to Kelvin: 100*C + 273.15 = 373.15 K
Now we can set up the equation for volume: (3mol)(0.0821)(373.15)/1.2atm = 76.6 L of Helium gas
Answer:
The last region should be right
Explanation:
<span>0 K on the Kelvin scale, which is absolute temperature scale; and –273.15 degrees Celsius on the Celsius scale, thus world wide has come to an agreement saying absolute zero is precisely. </span>