Answer:
<em>The bullet was 0.52 seconds in the air.</em>
Explanation:
<u>Horizontal Motion
</u>
It occurs when an object is thrown horizontally with a speed v from a height h.
The object describes a curved path ruled exclusively by gravity until it hits the ground.
To calculate the time the object takes to hit the ground, we use the following equation:
Note it doesn't depend on the initial velocity but on the height.
The bullet is fired horizontally at h=1.3 m, thus:
t = 0.52 s
The bullet was 0.52 seconds in the air.
Answer:
Q=∆U+W
Explanation:
work done+ change in internal energy = heat supplied to change the internal energy
(1st law of thermodynamics)
Answer:
va = 4.79 m/s
vb = 1.29 m/s
Explanation:
Momentum is conserved:
m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂
(3.00) (0) + (6.50) (3.50) = (3.00) v₁ + (6.50) v₂
22.75 = 3v₁ + 6.5v₂
For an elastic collision, kinetic energy is conserved.
½ m₁u₁² + ½ m₂u₂² = ½ m₁v₁² + ½ m₂v₂²
m₁u₁² + m₂u₂² = m₁v₁² + m₂v₂²
(3.00) (0)² + (6.50) (3.50)² = (3.00) v₁² + (6.50) v₂²
79.625 = 3v₁² + 6.5v₂²
Two equations, two variables. Solve with substitution:
22.75 = 3v₁ + 6.5v₂
22.75 − 3v₁ = 6.5v₂
v₂ = (22.75 − 3v₁) / 6.5
79.625 = 3v₁² + 6.5v₂²
79.625 = 3v₁² + 6.5 ((22.75 − 3v₁) / 6.5)²
79.625 = 3v₁² + (22.75 − 3v₁)² / 6.5
517.5625 = 19.5v₁² + (22.75 − 3v₁)²
517.5625 = 19.5v₁² + 517.5625 − 136.5v₁ + 9v₁²
0 = 28.5v₁² − 136.5v₁
0 = v₁ (28.5v₁ − 136.5)
v₁ = 0 or 4.79
We know v₁ isn't 0, so v₁ = 4.79 m/s.
Solving for v₂:
v₂ = (22.75 − 3v₁) / 6.5
v₂ = 1.29 m/s