Answer:
76.1N
Explanation:
Given parameters:
Mass of the ball = 7.77kg
Unknow:
Weight of balloon = ?
Solution:
Weight is the vertical force applied on a body.
Weight = mass x acceleration due gravity
So;
Weight = mass x acceleration due to gravity
So;
Weight = 7.77 x 9.8 = 76.1N
Answer:
Option B
Explanation:
The butter forms a new arrangement of atoms i.e from solid to liquid
268.6567 mph is its velocity when it crosses the finish line
d=(v1+v2 /2) x t
.25=(0+v2 /2) x 6.7/3600 hours
900=v2/2 x 6.7
v2=268.6567 mph as the speed with which the dragster crosses the finish
<h3>When acceleration is not zero, can speed remain constant?</h3>
The answer is that an accelerated motion can have a constant speed. Consider a particle travelling uniformly around a circle; it experiences acceleration since the motion's direction is changing, but it maintains a constant speed along the tangential axis throughout the motion.
Acceleration is the frequency of a change in velocity. Acceleration is a vector with magnitude and direction, much as velocity. For instance, if a car is moving in a straight path and speeding up, it is said to have forward (positive) acceleration, and if it is slowing down, it is said to have backward (negative) acceleration.
Learn more about velocity refer
brainly.com/question/24681896
#SPJ9
Answer:
W = 1884J
Explanation:
This question is incomplete. The original question was:
<em>Consider a motor that exerts a constant torque of 25.0 N.m to a horizontal platform whose moment of inertia is 50.0kg.m^2 . Assume that the platform is initially at rest and the torque is applied for 12.0rotations . Neglect friction.
</em>
<em>
How much work W does the motor do on the platform during this process? Enter your answer in joules to four significant figures.</em>
The amount of work done by the motor is given by:


Where I = 50kg.m^2 and ωo = rad/s. We need to calculate ωf.
By using kinematics:

But we don't have the acceleration yet. So, we have to calculate it by making a sum of torque:

=> 
Now we can calculate the final velocity:

Finally, we calculate the total work:

Since the question asked to "<em>Enter your answer in joules to four significant figures.</em>":
W = 1884J
If she only has 21 buttons and all 21 of them are large, then all of her buttons are large. so 100% of the buttons would be large.