The force applied by the competitor is littler than the heaviness of the barbell. At the point when the barbell quickens upward, the power applied by the competitor is more prominent than the heaviness of the barbell. When it decelerates upward, the power applied by the competitor is littler than the heaviness of the barbell.
A.) Each point on a wave front acts as a source of secondary waves.
The snail would travel 100mm
Each minutes is 25mm and it took 4 minutes
4 x 25 = 100
or
25+25+25+25=100
Answer:
1600 kJ/h per K, 888.88 kJ/h per °F and 888.88kJ/h per R
Explanation:
We make use of relations between temperature scales with respect to degrees celsius:

This means that a change in one degree celsius is equivalent to a change of one kelvin, while for a degree farenheit and rankine this is equivalent to a change of 1.8 on both scales.
So:
