Answer: vf1/vf2= 1/ sqrt(2)
Explanation :on the moon no drag force so we have only the force of gravity. aceleration is g(moon)= 1.62m/s2.the rest is basic kinematics
if the rock travels H to the bottom we can calculate velocity:
vo=0m/s (drops the rock) , yo=0
vf*vf= vo*vo+2g(y-yo)
when the rock is halfway y = H/2 so:
vf1*vf1=2*g*H/2 so vf1 = sqrt(gH)
when the rock reach the bottom y=H so:
vf2*vf2=2*g*H so vf2 = sqrt(2gH)
so vf1/vf2= 1/ sqrt(2)
good luck from colombia
Let us start from considering monochromatic light as an incidence on the film of a thickness t whose material has an index of refraction n determined by their respective properties.
From this point of view part of the light will be reflated and the other will be transmitted to the thin film. That additional distance traveled by the ray that was reflected from the bottom will be twice the thickness of the thin film at the point where the light strikes. Therefore, this relation of phase differences and additional distance can be expressed mathematically as

We are given the second smallest nonzero thickness at which destructive interference occurs.
This corresponds to, m = 2, therefore


The index of refraction of soap is given, then

Combining the results of all steps we get

Rearranging, we find



Boyles law
Pressure and volume are inversely proportional as the new variable changes from the known.
Double the pressure equals 1/2 of original volume, assuming temperature remains the same.
So 40.0 mL is the new volume as it is compressed.
'A' is correct. B, C, and D are false statements.
Answer:
Density relates a mass to its volume.
Density varies with temperature
Density determines if a substance floats or sinks.
Density may have units of grams per milliliter (g/mL)
Explanation:
Density
is a characteristic property of a substance or material and is defined as the relationship between the mass
of a body or substance and the volume
it occupies:
This means the density is inversely proportional to the volume.
On the other hand, density is a scalar quantity and according to the International System of Units its unit is
, although it can be also expressed in
.
It should be noted that the density of a body is related to its buoyancy, a substance or body will float on another fluid if its density is lower. In addition, if the pressure of the substance remains constant, as the temperature increases, the density decreases; this means density varies with the temperature as well.