Explanation:
When a constant force acts upon an object the acceleration of the object varies inversely with its mass.

or

If m₁ = 21 kg, a₁ = 3 m/s², m₂ = 9 kg
We need to find a₂
So,

So, if mass is 9 kg, its acceleration is 7 m/s².
Answer:
8.3
Explanation:
thats what i think sorry if its wrong im ok at doing this stuff
Answer:
DmxmxmdmdExplanation:sejwjsjskdkdkdekskekememd
Explanation:
jjckg xoz 96 dzod I o6d 69f 07r 80ct
Answer:
1196.02 °C
Explanation:
If the kinetic energy is converted into heat,
then,
Kinetic energy of the copper = heat energy of the copper
1/2m(v²) = cm(t₂-t₁)
where m = mass of copper, v = velocity of copper, c = specific heat capacity of copper, t₂ = final temperature of copper, t₁ = initial temperature of copper.
Since the mass of copper remains the same,
1/2v² = c(t₂-t₁)
make t₂ the subject of the equation
t₂ = 1/2(v²/c)+t₁..................... Equation 1
Given: v = 950 m/s, c = 387 J/kg°C, t₁ 30 °C
Substitute into equation 1
t₂ = 1/2(950²/387)+30
t₂ = 1196.02 °C
Hence the temperature the bullet reach before it was stopped = 1196.02 °C