Answer:
Options 1 and 5 are correct
Explanation:
Magnetic field lines can never cross, the field is unique at any point in space. Magnetic field lines are continuous, forming closed loops without beginning or end. They go from the north pole to the south pole.
Magnetic field lines form closed loops but do not intersect.
Electric field lines originate at the positive charges and terminate at the negative charges. They move in a straight line and are parallel. Electric field lines neither form closed loops nor intersect.
Since, magnetic field lines form closed loops and move from North to South pole, they come out of north poles outside the magnet and into north poles inside the magnet, they also go into south poles outside the magnet and out of south poles inside the magnet.
Explanation:
It is given that,
Mass of the tackler, m₁ = 120 kg
Velocity of tackler, u₁ = 3 m/s
Mass, m₂ = 91 kg
Velocity, u₂ = -7.5 m/s
We need to find the mutual velocity immediately the collision. It is the case of inelastic collision such that,


v = -1.5 m/s
Hence, their mutual velocity after the collision is 1.5 m/s and it is moving in the same direction as the halfback was moving initially. Hence, this is the required solution.
Answer: The angle of inclination is nearly 30°
Explanation:
For a body on an inclined plane, the coefficient of friction between the body and the plane is equal to the ratio of the moving force applied to the body to the frictional force acting on the body.
If uK coefficient of friction;
Fm is the moving force
R is the normal reaction on the body
Mathematically uK = Fm/R
Fm = WSin(theta)
R = Wcos(theta)
uK = Wsin(theta)/Wcos(theta)
uK = tan(theta)
theta = arctan(uK)
If uK is 0.58
theta = arctan0.58
theta = 30°
The angle of the inclined will be 30°
The apparent weight of a 1.1 g drop of water is 4.24084 N.
<h3>
What is Apparent Weight?</h3>
- According to physics, an object's perceived weight is a characteristic that describes how heavy it is. When the force of gravity acting on an object is not counterbalanced by a force of equal but opposite normality, the apparent weight of the object will differ from the actual weight of the thing.
- By definition, an object's weight is equal to the strength of the gravitational force pulling on it. It follows that even a "weightless" astronaut in low Earth orbit, with an apparent weight of zero, has almost the same weight that he would have if he were standing on the ground; this is because the gravitational pull of low Earth orbit and the ground are nearly equal.
Solution:
N = Speed of rotation = 1250 rpm
D = Diameter = 45 cm
r = Radius = 22.5 cm
M = Mass of drop = 1.1 g
Angular speed of the water = 


Apparent weight is given by


= 4.24084 N
Know more about Apparent weight brainly.com/question/14323035
#SPJ4
Question:
The spin cycle of a clothes washer extracts the water in clothing by greatly increasing the water's apparent weight so that it is efficiently squeezed through the clothes and out the holes in the drum. In a top loader's spin cycle, the 45-cm-diameter drum spins at 1250 rpm around a vertical axis. What is the apparent weight of a 1.1 g drop of water?
The right answer for the question that is being asked and shown above is that: "1-4-3-2." (main sequence-->red giant-->supergiant-->white dwarf). Assume that all four H-R diagrams below represent a star in different stages of its life, after it starts to fuse hydrogen in its core.