Answer:
no I don’t think there can be so my answer is No.
Okay then yes sorry that I must have gotten it wrong before.
Explanation:
Answer: d. 8.25 m/s
Explanation:
We are given that Current= 5 m/s in j direction
Velocity= 8 m/s i + 3 m/s j
Now, we have to find Jada's speed with respect to the water.
First we find Jada's velocity with respect to water
v= (8 i + 3 j) - (5 j)
v= 8i - 2 j
To find the speed, we take the magnitude of this velocity vector we have
|v|= 
|v|=
= 8.246 m/s
which comes out to be around = 8.25 m/s
So option d is correct.
Answer:
Option (e) = The charge can be located anywhere since flux does not depend on the position of the charge as long as it is inside the sphere.
Explanation:
So, we are given the following set of infomation in the question given above;
=> "spherical Gaussian surface of radius R centered at the origin."
=> " A charge Q is placed inside the sphere."
So, the question is that if we are to maximize the magnitude of the flux of the electric field through the Gaussian surface, the charge should be located where?
The CORRECT option (e) that is " The charge can be located anywhere since flux does not depend on the position of the charge as long as it is inside the sphere." Is correct because of the reason given below;
REASON: because the charge is "covered" and the position is unknown, the flux will continue to be constant.
Also, the Equation that defines Gauss' law does not specify the position that the charge needs to be located, therefore it can be anywhere.
Answer:
the answer is C i didnt mean to put b lol
Explanation: