Let the ratio of grams of hydrogen per gram of carbon in methane be M, we know that:
M = 0.3357 g / 1 g
Next, lets represent the grams of hydrogen per gram of carbon in ethane be E. The final piece of information we have is:
M / E = 4/3
If we cross multiply,
3M = 4E
Now, substituting the value of M from earlier and solving for E,
E = (3 * 0.3357) / 4
E = 0.2518
There are 0.2518 grams of hydrogen per gram of carbon in ethane.
Answer:
We have NH 4 and that's called the ammonium ion it also stays together.
Explanation:
Answer:
H^+(aq) + OH^-(aq) —> H2O(l)
Explanation:
We'll begin by writing the balanced equation for the reaction.
2HCl(aq) + Ca(OH)2(aq) —> CaCl2(aq) + 2H2O(l)
Ca(OH)2 is a strong base and will dissociates as follow:
Ca(OH)2(aq) —> Ca^2+(aq) + 2OH^-(aq)
HCl is a strong acid and will dissociates as follow:
HCl(aq) —> H^+(aq) + Cl^-(aq)
Thus, In solution a double displacement reaction occurs as shown below:
2H^+(aq) + 2Cl^-(aq) + Ca^2+(aq) + 2OH^-(aq) —> Ca^2+(aq) + 2Cl^-(aq) + 2H2O(l)
To get the net ionic equation, cancel out Ca^2+ and 2Cl^-
2H^+(aq) + 2OH^-(aq) —> 2H2O(l)
H^+(aq) + OH^-(aq) —> H2O(l)
Hi there!
Deep sea divers CANNOT use pure oxygen in their tanks. Pure oxygen is deadly, and can kill them. This would be called Oxygen toxicity
Hope this helps you!
~DL ☆☆☆