Answer:
Sunlight
Water
And carbon dioxide
Additional information :
6CO2 + 6H2O → C6H12O6 + 6O2
Answer:
3 years
Explanation:
Given data:
Initial amount of sample = 160 Kg
Amount left after 12 years = 10 Kg
Half life = ?
Solution:
at time zero = 160 Kg
1st half life = 160/2 = 80 kg
2nd half life = 80/2 = 40 kg
3rd half life = 40 / 2 = 20 kg
4th half life = 20 / 2 = 10 kg
Half life:
HL = elapsed time / half life
12 years / 4 = 3 years
Answer:
a. minimum voltage that must be supplied for a redox reaction to occur
c. always equal to Eanode - Ecathode
Explanation:
In an electrolytic cell; The electromotive force(the maximum standard potential difference) of the cell formed by the system is defined as the standard electrode potential of the right handed electrode minus the standard electrode potential of the left hand electrode. (i.e
)
As we all known that the process by which chemical energy is being converted to electrical energy is called the Electrochemical cell. It consists of two half cells , an oxidation half cell reaction and a reduction half-cell reaction.The overall redox reaction results in a flow of electrons in an electric current which is produced by a minimum voltage.
Therefore, option a and c are both correct.
<span>B)<span>C2H6O<span>2
</span></span></span>
First, convert each percentage to grams: 38.7g, 9.70g, and 51.6g.
Next, calculate the number of moles of each element, based on the number of grams given.
C = 3.23 mol
H = 8.91 mol
O = 3.23 mol
Set up the ratio of moles of each element:
C3.34H9.70O3.23. Convert the decimals to whole numbers by dividing by the smallest subscript, 3.23.
The empirical formula is CH3O.
Now, compute the formula mass, which is 31. Finally, divide the molecular mass by the formula mass, 62/31 = 2. Multiple the subscripts by 2 to get the molecular formula.
Well, these particles happens to be small, like REALLY small. So microscopically small they aren't picked up or observed my the naked eye. also the vibrations are in an atomic scale which is also VERY tiny This goes for all solids too.