Answer:
163.2g
Explanation:
First let us generate a balanced equation for the reaction. This is shown below:
4Al + 3O2 —> 2Al2O3
From the question given, were were told that 3.2moles of aluminium was exposed to 2.7moles of oxygen. Judging by this, oxygen is excess.
From the equation,
4moles of Al produced 2moles of Al2O3.
Therefore, 3.2moles of Al will produce = (3.2x2)/4 = 1.6mol of Al2O3.
Now, let us covert 1.6mol of Al2O3 to obtain the theoretical yield. This is illustrated below:
Mole of Al2O3 = 1.6mole
Molar Mass of Al2O3 = (27x2) + (16x3) = 54 + 48 =102g/mol
Mass of Al2O3 =?
Number of mole = Mass /Molar Mass
Mass = number of mole x molar Mass
Mass of Al2O3 = 1.6 x 102 = 163.2g
Therefore the theoretical of Al2O3 is 163.2g
<span>false - sodium is not a member of the transition elements, however </span><span>copper is a </span><span>member of the transition elements.</span>
Noble gases react very unwillingly, because the outermost shell of electrons orbiting the nucleus is full, giving these gases no incentive to swap electrons with other elements. As a result, there are very few compounds made with noble gases. Like its noble gas comrades, neon is odorless and colorless.
Answer:
A thermochemical equation for the combustion of propane (C3H8)(C3H8) is written as follows:
C3H8(l)+5O2(g)→3CO2(g)+4H2O(g);ΔH∘rxnC3H8(l)+5O2(g)→3CO2(g)+4H2O(g);ΔHrxn∘ = -2202.0 kJ/mol
The value given for ΔH∘rxnΔHrxn∘ means that:
a. the reaction of one mole of propane absorbs 2202 kJ of energy from the surroundings.
b. the reaction is endothermic.
c. the enthalpy of formation of propane is 2202 kJ/mol.
d. the reaction of one mole of propane releases 2202 kJ of energy to the surroundings.
e. None of these.
Answer:
Zn(OH)2 + 2CH3COOH -----> Zn(CH3COO)2 + 2H2O
Explanation:
Zn(OH)2 + 2CH3COOH -----> Zn(CH3COO)2 + 2H2O