Hello!
To find the amount of energy need to raise the temperature of 125 grams of water from 25.0° C to 35.0° C, we will need to use the formula: q = mcΔt.
In this formula, q is the heat absorbed, m is the mass, c is the specific heat, and Δt is the change in temperature, which is found by final temperature minus the initial temperature.
Firstly, we can find the change in temperature. We are given the initial temperature, which is 25.0° C and the final temperature, which is 35.0° C. It is found by subtract the final temperature from the initial temperature.
35.0° C - 25.0° C = 10.0° C
We are also given the specific heat and the grams of water. With that, we can substitute the given values into the equation and multiply.
q = 125 g × 4.184 J/g °C × 10.0° C
q = 523 J/°C × 10.0° C
q = 5230 J
Therefore, it will take 5230 joules (J) to raise the temperature of the water.
That would cause the equation to shift right, and make more NH3 and decrease the amount of N2
Answer:
The gain in mass by the negative electrode is the same as the loss in mass by the positive electrode. So the copper deposited on the negative electrode must be the same copper ions that are lost from the positive electrode.
The required volume of water is 0.18 liters.
<h3>What is molarity?</h3>
Molarity of any solution is define as the number of moles of solute present in per liter of solution as;
M = n/V
Moles of solute will be calculated as:
n = W/M, where
W = given mass of HCl = 32g
M = molar mass of HCl = 36.4g/mol
n = 32 / 36.4 = 0.88 mole
Given molarity of solution = 4.80M
On putting all values in the above equation, we get
V = (0.88) / (36.4) = 0.18 L
Hence required volume of water is 0.18L.
To know more about volume & concentration, visit the below link:
brainly.com/question/26762947
#SPJ1
Answer:
SO the awnser is 76.9 trust me
Explanation: