Answer:
A
Explanation:
First, let's find the molar mass of CO₂. This is 12 + 2(16) = 44 g/mole.
Now we can write 100g * (1 mole / 44g) = 2.27 mol, or A. Hope this helps!
Answer:
V₂ = 0.656 L
Explanation:
Given data:
Initial volume = 3.5 L
Initial pressure = 2.5 KPa
Final volume = ?
Final pressure = 100 mmHg (100/7.501=13.33 KPa)
Solution:
The given problem will be solved through the Boyle's law,
"The volume of given amount of gas is inversely proportional to its pressure by keeping the temperature and number of moles constant"
Mathematical expression:
P₁V₁ = P₂V₂
P₁ = Initial pressure
V₁ = initial volume
P₂ = final pressure
V₂ = final volume
Now we will put the values in formula,
P₁V₁ = P₂V₂
2.5 KPa × 3.5 L = 13.33 KPa × V₂
V₂ = 8.75 KPa. L/13.33 KPa
V₂ = 0.656 L
Answer:
我實際上不知道答案,我只是為了點數而這樣做,哈哈,祝你好運哈哈
Explanation:
我實際上不知道答案,我只是為了點我實際上不知道答案,我只是為了點數而這樣做,哈哈,祝你好運哈哈數而這樣做,哈哈,祝你好運哈哈
Injecting salt crystals over the ocean to grow cloud droplets has been proposed in efforts to make the clouds brighter thereby affecting the radiation budget. The light of the sun shines on Earth, some of that light is reflected by the clouds back to space and some of the light reaches the earth and warms our planet. The earth and the hot oceans emit infrared radiation (IR), which we feel as heat. That IR "light"; returns to space through the atmosphere. Most are trapped by greenhouse gases, which keep the earth warm. Soon after, the IR radiation returns to space. Scientists call this "energy budget of the Earth" this cycle of incoming and outgoing energy.
Answer:
no, Charon is significantly smaller than Mercury