Answer:
The correct option is;
B. 8 m, because he has to apply less force over a greater distance
Explanation:
In the given question, in order for the student to lift the boxes onto the tuck with less amount of force, he applies the principle of Mechanical Advantage
The mechanical advantage is given by the measure by which a force is amplified through the use of a tool
Given that the work done = The force × The distance, we have
F₁ × d₁ = F₂ × d₂, which gives;
d₁/d₂ = F₂/F₁
Where;
F₁ = The input force
F₂ = The output force
d₁ = The input distance
d₂ = The output distance
The Mechanical advantage, MA = d₁/d₂ = F₂/F₁
Therefore, when the input distance is increased the input force will be reduced for a given output force
F=ma
11.6=3.8*a
a=11.6/3.8
a=3.05m/s
Answer:
D &B
Explanation:
Using Fleming right hand rule that States that if the fore-finger, middle finger and the thumb of left hand are stretched mutually perpendicular to each other, such that fore-finger points in the direction of magnetic field, the middle finger points in the direction of the motion of positive charge, then the thumb points to the direction of the force
Answer:

Explanation:
<u>Frictional Force
</u>
When the car is moving along the curve, it receives a force that tries to take it from the road. It's called centripetal force and the formula to compute it is:

The centripetal acceleration a_c is computed as

Where v is the tangent speed of the car and r is the radius of curvature. Replacing the formula into the first one

For the car to keep on the track, the friction must have the exact same value of the centripetal force and balance the forces. The friction force is computed as

The normal force N is equal to the weight of the car, thus

Equating both forces

Simplifying

Substituting the values

