Answer:
Which sentence from the passage shows that the function of the river depicted here has carried through to modern times?
Explanation:
Which sentence from the passage shows that the function of the river depicted here has carried through to modern times?
Work is (force applied) x (distance through which the force moves).
Since the suitcase doesn't move up or down during the 15 minutes,
no work is done ... zero, zip, nada ... according to the real Physics
definition of 'work'.
Explanation:
The deeper the sediment layer above bedrock, the more soft soil there is for the seismic waves to travel through. Soft soil means bigger waves and stronger amplification. The earthquake damage to this building may have been influenced by the type of soil it's sitting on.
Answer:
The current is
The direction is anti-clockwise
Explanation:
The diagram for this question is shown on the first uploaded image
From the question we are told that
the length of the conducting rod is 
The resistance is 
The magnetic field is 
The speed of the rod is 
The emf induced is
substituting values we have


From ohm law the induced current would be

substituting values we have

The direction anticlockwise this because according to lenze law the current due to change in magnetic field will act in the opposite direction of the force causing the magnetic field to change
a) 120 s
b) v = 0.052R [m/s]
Explanation:
a)
The period of a revolution in a simple harmonic motion is the time taken for the object in motion to complete one cycle (in this case, the time taken to complete one revolution).
The graph of the problem is missing, find it in attachment.
To find the period of revolution of the book, we have to find the time between two consecutive points of the graph that have exactly the same shape, which correspond to two points in which the book is located at the same position.
The first point we take is t = 0, when the position of the book is x = 0.
Then, the next point with same shape is at t = 120 s, where the book returns at x = 0 m.
Therefore, the period is
T = 120 s - 0 s = 120 s
b)
The tangential speed of the book is given by the ratio between the distance covered during one revolution, which is the perimeter of the wheel, and the time taken, which is the period.
The perimeter of the wheel is:

where R is the radius of the wheel.
The period of revolution is:

Therefore, the tangential speed of the book is:
