Answer:
the specific heat of the unknown compound is 
Explanation:
Generally the change in temperature of water is evaluated as

Substituting 16.1°C for
and 27.4°C for 


Generally the change in temperature of unknown compound is evaluated as

Substituting 27.4°C for
and 94.3°C for 


Since there is an increase in temperature then heat is gained by water and this can be evaluated as

Substituting 179.1 g for m , 4.18 J/g.C for
(specific heat of water)


Since there is a decrease in temperature then heat is lost by unknown compound and this can be evaluated as

By conservation of energy law
Heat lost = Heat gained
Substituting 306.9 g for
, 8459.6J for

Therefore 

Answer:
Final temperature = 1279.25 K
Explanation:
We can solve this using the formula for Charles law since we are given volume and temperature.
From Charles law, we know that;
V1/T1 = V2/T2
Where;
T1 is the initial temperature
V1 is the initial volume
T2 is the final temperature
V2 is the final volume
We are given;
V1 = 2 L
T1 = 301 K
V2 = 8.5 L
Thus, making T2 the subject, we have;
T2 = V2•T1/V1
Plugging in the relevant values;
T2 = 8.5 × 301/2
T2 = 1279.25 K
Answer:
Economy is always at the full employment level of output
Explanation:
The economy in a classical long-run supply model will always have the same economic output
Answer: C ) the student’s dependent variable is the magnitude of the magnetic field that is generated
E ) the student’s independent variable is the amount of current that is being passed through the wire