There are 18. In each molecule of Fe(NO3)2 there are 6 oxygen atoms because you have 2 nitrate (NO3) components which each contain 3 oxygen atoms. 2 x 3 = 6. Because you have 3 molecules of Fe(NO3)2, you need to multiply 6 by 3, which gives you 18 oxygen atoms.
Answer:
The pH of the solution is 7, 52
Explanation:
The pH gives us an idea of the acidity or alkalinity of a solution. Is calculated:
pH = -log (H +)
pH= -log ( 3x10-8)= <em>7, 52</em>
Answer:
C. The potential energy change for a chemical reaction.
Explanation:
The reaction coordinate q illustrates, graphically, the energy changes during exothermic and endothermic reactions. This graphical representation of the energy changes in the course of a chemical reaction is known as reaction coordinates. A reaction coordinate is a graphical sequence of steps by which the reaction progresses from reactants through activated complexes to products. Reaction coordinates explain how far a reaction has proceeded towards the products or from the reactants.
From the images attached below, we can see the reaction coordinates in the reaction profiles.
Answer:
The specific rotation of D is 11.60° mL/g dm
Explanation:
Given that:
The path length (l) = 1 dm
Observed rotation (∝) = + 0.27°
Molarity = 0.175 M
Molar mass = 133.0 g/mol
Concentration in (g/mL) = 0.175 mol/L × 133.0 g/mol
Concentration in (g/mL) = 23.275 g/L
Since 1 L = 1000 mL
Concentration in (g/mL) = 0.023275 g/mL
The specific rotation [∝] = ∝/(1×c)
= 0.27°/( 1 dm × 0.023275 g/mL
)
= 11.60° mL/g dm
Thus, the specific rotation of D is 11.60° mL/g dm