Answer:

Explanation:
Given that,
The mass of a golf ball, m = 40 g = 0.04 kg
Its angular velocity, 
The radius of the sphere is 2.5 cm or 0.025 m
We need to find the magnitude of the angular momentum of the ball. It is given by the formula as follows:

Where I is moment of inertia
For sphere, 

So, the magnitude of the angular momentum of the sphere is
.
Answer:
Distance = 6.667 kilometres
Explanation:
Given the following data;
Speed = 20 km/h
Departure time = 7:00
Arrival time = 7:20
Time taken = 20 minutes
To calculate the distance travelled from home to school;
First of all, we would have to convert the value of time in minutes to hours.
Conversion:
60 minutes = 1 hour
20 minutes = X hours
Cross-multiplying, we have;
X = 20/60 = 1/3 hours
Mathematically, the distance travelled by an object is calculated by using the formula;
Distance = speed * time
Distance = 20 * 1/3
Distance = 20/3 =
Distance = 6.667 kilometres
There are two torques t1 and t2 on the beam due to the weights, one torque t3 due to the weight of the beam, and one torque t4 due to the string.
You need to figure out t4 to know the tension in the string.
Since the whole thing is not moving t1 + t2 + t3 = t4.
torque t = r * F * sinФ = distance from axis of rotation * force * sin (∡ between r and F)
t1 =3.2 * 44g
t2 = 7 * 49g
t3 = 3.5 * 24g
t4 = t1 + t2 + t3 = 5570,118
The t4 also is given by:
t4 = r * T * sin Ф
r = 7
Ф = 32°
T: tension in the string
T = t4 / (r * sinФ)
T = t4 / (7 * sin(32°))
T = 1501,6 N
You're talking about a grain of sand or a stone or a rock that's drifting in space, and then the Earth happens to get in the way, so the stone falls down to Earth, and it makes a bright streak of light while it's falling through the atmosphere and burning up from the friction.
-- While it's drifting in space, it's a <em>meteoroid</em>.
-- While it's falling through the atmosphere burning up and making a bright streak of light, it's a <em>meteor</em>.
-- If it doesn't completely burn up and there's some of it left to fall on the ground, then the leftover piece on the ground is a <em>meteorite</em>.
My guess is A. I'm not 100% positive but i'm pretty sure.