Refer to the diagram shown below.
g = 9.8 m/s², and air resistance is ignored.
For mass m₁:
The normal reaction is m₁g.
The resisting force is R₁ = μm₁g.
For mass m₂:
The normal reaction is m₂g.
The resisting force is R₂ = μm₂g.
Let a = the acceleration of the system.
Then
(m₁ + m₂)a = F - (R₁ + R₂)
(14+26 kg)*(a m/s²) = (65 N) - 0.098*(9.8 m/s²)*(14+26 kg)
40a = 65 - 38.416 = 26.584
a = 0.6646 m/s²
Answer: 0.665 m/s² (nearest thousandth)
Answer:
Explanation:
For resistance of a wire , the formula is as follows .
R = ρ L/S
where ρ is specific resistance , L is length and S is cross sectional area of wire .
for first wire resistance
R₁ = ρ 3L/3a = ρ L/a
for second wire , resistance
R₂ = ρ 3L/6a
= .5 ρ L/a
For 3 rd wire resistance
R₃ = ρ 6L/3a
= 2ρ L/a
For fourth wire , resistance
R₄ = ρ 6L/6a
= ρ L/a
So the smallest resistance is of second wire .
Its resistance is .5 ρ L/a
During convection of air currents, cool air sinks. <em>(b)</em>
Answer:
Positive z direction.
Explanation:
The magnetic force acting on the electron is given by the formula as :

q is the charge on proton
v is the speed of proton
B is the magnetic field
It is mentioned that the proton is moving with a velocity in the positive x-direction. The uniform magnetic field B in the positive y-direction such taht,
q = +e
v = vi
B = Bj

Since, 

So, the magnetic force acting on the proton in positive z axis. Hence, the correct option is (d) "positive z direction".
Answer:
P = 34034.2 Watt
Explanation:
As we know that the slope angle is given as

now the weight of the rider along the slope is given as



now total weight of all 53 riders along the slope is given as


now the speed of the rope is given as

now the power required is given as


