Answer:
The answer is 3.48 seconds
Explanation:
The kinematic equation
y= y0+V0*t+1/2*a*(t*t)
-50=0+(0)t+1/2(-9.8)*(t*t)
t=3.194 seconds
During ribbons ball,
x=x0+ Vt+1/2*a*(t*t)
x= 0+(15)*(3.194)+1/2*(0)* (3.194*3.194)
x= 47.9157m
So, distance (D) = 100-47.9157= 52.084m
52.084m=0+15(t)+1/2*(0)(t*t)
t=52.084/15=3.472286= 3.48seconds
Answer:
3141N or 3.1 ×10³N to 2 significant figures. The can experiences this inward force on its outer surface.
Explanation:
The atmospheric pressure acts on the outer surface of the can. In order to calculate this inward force we need to know the total surface area of the can available to the air outside the can. Since the can is a cylinder with a total surface area given by 2πrh + 2πr² =
A = 2πr(r + h)
Where h = height of the can = 12cm
r = radius of the can = 6.5cm/2 = 3.25cm
r = diameter /2
A = 2π×3.25 ×(3.25 + 12) = 311.4cm² = 311.4 ×10-⁴ = 0.031m²
Atmospheric pressure, P = 101325Pa = 101325 N/m²
F = P × A
F = 101325 ×0.031.
F = 3141N. Or 3.1 ×10³ N.
Density = mass / volume ;
1 Cubic Centimeter = 0,000001 Cubic Meter
8 cm^3 = 0.000008 m^3
12,9 g = 0,0129 kg
The density is 0,0129 kg/ 0,000008 m^3 = <span><u>1612,5 kg/m^3</u> </span>
Into molecules of
sugar and
oxygen.
The complete reaction of the photosynthesis is in fact:

and the energy of the light coming from the sun is also used to make the reaction possible.
Answer: tensional force
Explanation:
Tension force on a material occurs when two equal forces act on a material in an opposite direction away from the ends of the material.
Pre-tensing a wire material increases its load bearing capacity and reduces its flexure.