Since we are only looking at the vertical height, we can use the free fall equation to find the height:
h = 0.5*g*t^2, where h is height in m, g is acceleration due to gravity (9.81 m/s^2), and t is time in seconds
h = 0.5*(9.81 m/s^2)*(3.7 s)^2
h = 67.15 m
Therefore, the 7th floor window is 67.15 m above ground level.
Answer:
A measure of the ability of a material to transfer heat.
Explanation:
Please mark me as brainliest please
Answer:
Your friend is 2.143 blocks from the restaurant.
You are 2.857 blocks from the restaurant.
Explanation:
Let t be the time both you and your friend take to walk to the restaurant.
The distance (m) from your building to the restaurant is your walking time t times your speed v1

Similarly the distance (m) from your friend building to the restaurant:

Let b be the length (in m) of a block, the total distance of 5 blocks is 5b





So your friend are 2.143b meters from the restaurant, since each block is b meters long, 2.143b meters would equals to 2.143b/b = 2.143 blocks. And you are 5 - 2.143 = 2.857 blocks from the restaurant.
Answer:
A boxed 14.0 kg computer monitor is dragged by friction 5.50 m up along the moving surface of a conveyor belt inclined at an angle of 36.9 ∘ above the horizontal. The monitor's speed is a constant 2.30 cm/s.
how much work is done on the monitor by (a) friction, (b) gravity
work(friction) = 453.5J
work(gravity) = -453.5J
Explanation:
Given that,
mass = 14kg
displacement length = 5.50m
displacement angle = 36.9°
velocity = 2.30cm/s
F = ma
work(friction) = mgsinθ .displacement
= (14) (9.81) (5.5sin36.9°)
= 453.5J
work(gravity)
= the influence of gravity oppose the motion of the box and can be pushing down, on the box from and angle of (36.9° + 90°)
= 126.9°
work(gravity) = (14) (9.81) (5.5cos126.9°)
= -453.5J
Answer:

Explanation:
<u>Diagonal Launch
</u>
It's referred to as a situation where an object is thrown in free air forming an angle with the horizontal. The object then describes a known path called a parabola, where there are x and y components of the speed, displacement, and acceleration.
The object will eventually reach its maximum height (apex) and then it will return to the height from which it was launched. The equation for the height at any time t is


Where vo is the magnitude of the initial velocity,
is the angle, t is the time and g is the acceleration of gravity
The maximum height the object can reach can be computed as

There are two times where the value of y is
when t=0 (at launching time) and when it goes back to the same level. We need to find that time t by making 

Removing
and dividing by t (t different of zero)

Then we find the total flight as

We can easily note the total time (hang time) is twice the maximum (apex) time, so the required time is
