Answer:
At low pressure-
At high pressure-
Explanation:
Initial speed,
Final speed,
Net horizontal force due to rolling friction
mg where m is mass, g is acceleration due to gravity,
is coefficient of rolling friction
From kinematic relation,
For each tire,
Making
the subject
Under low pressure of 40 Psi, d=18 m
Therefore,
At a pressure of 105 Psi, d=93.7
Therefore,
<span>you can look at magnesium, it can react with oxygen to form oxides. (chemical) it is malleable and a solid at room temperature. (physical)
</span><span>to measure its density, the mass and volume can be worked out and from this density too. look up the equation, it is quite easy :)
</span><span>physical changes -- it can be melted, and oxidized
</span><span>the chemical changes of oxidation magnesium looses electrons to form oxides, this is a chemical reaction- chemical change..--- use to get the density use (rho) or density D = M/V</span>
Answer:
0
Explanation:
the momentum will always be 0 when it is at rest because the object isnt moving!
Hope this helped!
Answer:
L = - 1361.591 k Kgm/s
Explanation:
Given
mA = 55.2 Kg
vA = 3.45 m/s
rA = 6.00 m
mB = 62.4 Kg
vB = 4.23 m/s
rB = 3.00 m
mC = 72.1 Kg
vC = 4.75 m/s
rC = - 5.00 m
then we apply the equation
L = (mv x r)
⇒ LA = mA*vA x rA = 55.2 *(3.45 i)x(6 j) = (1142.64 k) Kgm/s
⇒ LB = mB*vB x rB = 62.4 *(4.23 j)x(3 i) = (- 791.856 k) Kgm/s
⇒ LC = mC*vC x rC = 72.1 *(- 4.75 j)x(- 5 i) = (- 1712.375 k) Kgm/s
Finally, the total counterclockwise angular momentum of the three joggers about the origin is
L = LA + LB + LC = (1142.64 - 791.856 -1712.375) k Kgm/s
L = - 1361.591 k Kgm/s