Answer:
h = 20 m
Explanation:
given.
height, h = 10 m
Potential energy at 10 m = 50 J
Kinetic energy at 10 m = 50 J
maximum height the ball will reach, H = ?
Total energy of the system
T E = 50 J + 50 J
T E = 100 J
now,
A h = 10 m
P E = m g h
50 = m g x 10
mg = 5 ..............(1)
at the top most Point the only Potential energy will be acting on the body.
now, TE = Potential energy
100 = m g h
5 h = 100
h = 20 m
hence, the maximum height reached by the ball is equal to 20 m.
At the time that I'll call ' Q ', the height of the stone that was
dropped from the tower is
H = 50 - (1/2 G Q²) ,
and the height of the stone that was tossed straight up
from the ground is
H = 20Q - (1/2 G Q²) .
The stones meet when them's heights are equal,
so that's the time when
<span>50 - (1/2 G Q²) = 20Q - (1/2 G Q²) .
This is looking like it's going to be easy.
Add </span><span>(1/2 G Q²) to each side.
Then it says
50 = 20Q
Divide each side by 20: 2.5 = Q .
And there we are. The stones pass each other
2.5 seconds
after they are simultaneously launched.
</span>
Answer:
The forms of energy involved are
1. Kinetic energy
2. Potential energy
Explanation:
The system consists of a ball initially at rest. The ball is pulled down from its equilibrium position (this builds up its potential energy) and then released. The released ball oscillates due to a continuous transition between kinetic and potential energy.