To calculate the specific heat capacity of an object or substance, we can use the formula
c = E / m△T
Where
c as the specific heat capacity,
E as the energy applied (assume no heat loss to surroundings),
m as mass and
△T as the energy change.
Now just substitute the numbers given into the equation.
c = 2000 / 2 x 5
c = 2000/ 10
c = 200
Therefore we can conclude that the specific heat capacity of the block is 200 Jkg^-1°C^-1
Answer:
Explanation:
We need the power equation for this which is
P = Work/time
We have everything we need to solve this (the mass of the object is extra information):
P = 6860/4
P = 1715W
Answer: did you get the answers?
Explanation:
Answer:

Explanation:
We can use the following kinematics equations to solve this problem:
.
Using the first one to solve for acceleration:
.
Now we can use the second equation to solve for the distance travelled by the airplane:
(three significant figures).
Answer:
The answer is explained below.
Explanation:
All the point on the disk has same angular acceleration. Here, the point P is at the midway between the center and the rim of the disk and the point Q is at rim of the disk.
So, the distance of the point Q from the axis is twicee the distance of the point P from the axis.
<em>Rp - R</em>
<em>Rq - 2R</em>
The linear acceleration is
α2 - Rα
So, the linear acceleration of Q is twice as great as the linear acceleration of P.
The speed of the particle when it is in the circular motion depends on the radius of the particle.
In this case, the speed of point Q is twice the speed of point P.