Answer:
Explanation:
Given that
Mass , m = 25 kg
We know that when body is in rest condition then static friction force act on the body and when body is in motion the kinetic friction force act on the body .That is why these two forces are given as follows
Static friction force ,fs= 165 N
Kinetic friction force ,fk = 127 N
If the body is moving with constant velocity ,it means that acceleration of that body is zero and all the forces are balanced.
Lets take coefficient of kinetic friction = μk
The kinetic friction is given as follows
fk = μk m g
Now by putting the values
127 = μk x 25 x 9.81


Therefore the value of coefficient of kinetic friction will be 0.51
Answer:
its on wheels and they are supposed to make it eas
Explanation:
Answer:
The answer is B. It is the one that has the triangle pointing up on the topside of the rope and seems to be a bit bigger than the other triangles.
Explanation:
The kayaker has velocity vector
<em>v</em> = (2.50 m/s) (cos(45º) <em>i</em> + sin(45º) <em>j</em> )
<em>v</em> ≈ (1.77 m/s) (<em>i</em> + <em>j</em> )
and the current has velocity vector
<em>w</em> = (1.25 m/s) (cos(315º) <em>i</em> + sin(315º) <em>j</em> )
<em>w</em> ≈ (0.884 m/s) (<em>i</em> - <em>j</em> )
The kayaker's total velocity is the sum of these:
<em>v</em> + <em>w</em> ≈ (2.65 m/s) <em>i</em> + (0.884 m/s) <em>j</em>
That is, the kayaker has a velocity of about ||<em>v</em> + <em>w</em>|| ≈ 2.80 m/s in a direction <em>θ</em> such that
tan(<em>θ</em>) = (0.884 m/s) / (2.65 m/s) → <em>θ</em> ≈ 18.4º
or about 18.4º north of east.