1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Basile [38]
3 years ago
10

Rod AB has a diameter of 200mm and rod BC has a diameter of 150mm. Find the required temperature increase to close the gap at C.

E copper = 120GPa, αcopper = 16.9x10-6/ ° C.
Physics
1 answer:
Leni [432]3 years ago
5 0

Answer:

T&=\frac{\sigma_{AB}+\sigma_{BC}}{2\alpha E}

Explanation:

The given data :-

  • Diameter of rod AB ( d₁ ) = 200 mm.
  • Diameter of rod BC ( d₂ ) = 150 mm.
  • The linear co-efficient of thermal expansion of copper ( ∝ ) = 1.6 × 10⁻⁶ /°C
  • The young's modulus of elasticity of copper ( E ) = 120 GPa = 120 × 10³ MPa.
  • Consider the required temperature increase to close the gap at C = T °C
  • Consider the change in length of the rod = бL

Solution :-

\begin{aligned}\sum H& =0\\-R_A+R_C&=0\\R_A&=R_C\\R_A&=R\\R_C&=R\\R_{A}&=\text{reaction\:force\:at\:A}\\R_{C}&=\text{reaction\:force\:at\:C}\\\sigma_{AB}&=\text{axial\:stress\:at\:A}\\\sigma_{BC}&=\text{axial\:stress\:at\:B}\\\sigma_{AB}&=\frac{R}{A_{A}}\\&=\frac{R_{A}}{A_{A}}\\\sigma_{BC}&=\frac{R_{B}}{A_{B}}\\&=\frac{R}{A_{B}}\\\frac{\sigma_{AB}}{\sigma_{BC}}&=\frac{A_{B}}{A_{B}}\\&=\frac{\frac{\pi}{4}\cdot 150^{2}}{\frac{\pi}{4}\cdot 200^{2}}\\&=\frac{9}{16}\end{aligned}

\begin{aligned}\delta L&= (\delta L _{thermal} +\delta L_{axial})_{AB} + ( \delta L _{thermal} +\delta L_{axial})_{BC}\\0& = (\delta L _{thermal} +\delta L_{axial})_{AB} + ( \delta L _{thermal} +\delta L_{axial})_{BC}\\&=\left[\alpha\:T\:L+\left(\frac{-RL}{AE}\right)\right]_{AB}+\left[\alpha\:T\:L+\left(\frac{-RL}{AE}\right)\right]_{BC}\\&=2\:\alpha\:T\:L-\frac{L}{E}(\sigma_{AB}+\sigma_{BC})\\T&=\frac{\sigma_{AB}+\sigma_{BC}}{2\alpha E}\end{aligned}

You might be interested in
The total energy of a block—spring system is 0.18 J. The amplitude is 14.0 cm and the maximum speed is 1.25 m/s. Find: (a) the m
algol13

a) The mass is 0.23 kg

b) The spring constant is 1.25 N/m

c) The frequency is 1.42 Hz

d) The speed of the block is 1.08 m/s

Explanation:

a)

We can find the mass of the block by applying the law of conservation of energy: in fact, the total mechanical energy of the system (which is sum of elastic potential energy, PE, and kinetic energy, KE) is constant:

E=PE+KE=const.

The potential energy is given by

PE=\frac{1}{2}kx^2

where k is the spring constant and x is the displacement. When the block is crossing the position of equilibrium, x = 0, so all the energy is kinetic energy:

E=KE_{max}=\frac{1}{2}mv_{max}^2 (1)

where

m is the mass of the block

v_{max}=1.25 m/s is the maximum speed

We also know that the total energy is

E=0.18 J

Re-arranging eq.(1), we can find the mass:

m=\frac{2E}{v_{max}^2}=\frac{2(0.18)}{(1.25)^2}=0.23 kg

b)

The maximum speed in a spring-mass system is also given by

v_{max} =\sqrt{\frac{k}{m}} A

where

k is the spring constant

m is the mass

A is the amplitude

Here we have:

v_{max}=1.25 m/s is the maximum speed

m = 0.23 kg is the mass

A = 14.0 cm = 0.14 m is the amplitude

Solving for k, we find the spring constant

k=\frac{v_{max}^2}{A^2}m=\frac{1.25^2}{0.14^2}(0.23)=18.3 N/m

c)

The frequency in a spring-mass system is given by

f=\frac{1}{2\pi}\sqrt{\frac{k}{m}}

where

k is the spring constant

m is the mass

In this problem, we have:

k = 18.3 N/m is the spring constant (found in part b)

m = 0.23 kg is the mass (found in part a)

Substituting and solving for f, we find the frequency of the system:

f=\frac{1}{2\pi}\sqrt{\frac{18.3}{0.23}}=1.42 Hz

d)

We can solve this part by using the law of conservation of energy; in fact, we have

E=PE+KE=\frac{1}{2}kx^2 + \frac{1}{2}mv^2

Where v is the speed of the system when the displacement is equal to x.

We know that the total energy of the system is

E = 0.18 J

Also we know that

k = 18.3 N/m is the spring constant

m = 0.23 kg is the mass

Substituting

x = 7.00 cm = 0.07 m

We can solve the equation to find the corresponding speed v:

v=\sqrt{\frac{2E-kx^2}{m}}=\sqrt{\frac{2(0.18)-(18.3)(0.07)^2}{0.23}}=1.08 m/s

#LearnwithBrainly

3 0
3 years ago
PLEASE HELP it takes tsooo long! lol ima fail! please help! thanks!
Natasha_Volkova [10]

Answer:

A and c, hope i helped xx

Explanation:

4 0
3 years ago
Read 2 more answers
A 45-mH ideal inductor is connected in series with a 60-Ω resistor through an ideal 15-V DC power supply and an open switch. If
Salsk061 [2.6K]

Complete question:

A 45-mH ideal inductor is connected in series with a 60-Ω resistor through an ideal 15-V DC power supply and an open switch. If the switch is closed at time t = 0 s, what is the current 7.0 ms later?

Answer:

The current in the circuit 7 ms later is 0.2499 A

Explanation:

Given;

Ideal inductor, L = 45-mH

Resistor, R =  60-Ω

Ideal voltage supply, V = 15-V

Initial current at t = 0 seconds:

I₀ = V/R

I₀  = 15/60 = 0.25 A

Time constant, is given as:

T = L/R

T = (45 x 10⁻³) / (60)

T = 7.5 x 10⁻⁴ s

Change in current with respect to time, is given as;

I(t) = I_o(1-e^{-\frac{t}{T}})

Current in the circuit after 7 ms later:

t = 7 ms = 7 x 10⁻³ s

I(t) = I_o(1-e^{-\frac{t}{T}})\\\\I =0.25(1-e^{-\frac{7*10^{-3}}{7.5*10^{-4}}})\\\\I = 0.25(0.9999)\\\\I = 0.2499 \ A

Therefore, the current in the circuit 7 ms later is 0.2499 A

6 0
3 years ago
Which type of thermal energy transfer occurs mostly in fluids?
Dmitry_Shevchenko [17]
The answer is: 

Heat transfer.In order to heat up water there has to be a way that the heat puts energy into the water,which make is rise in temperature. 

I hope this helps :D 
7 0
3 years ago
Read 2 more answers
Can the distance coverd by a body ever be negative? What about its distance and displacement​
Tju [1.3M]

answer in photo enjoy

4 0
3 years ago
Other questions:
  • Is the gravitational force between the two objects attractive, repelling, or both? Explain how you know
    9·1 answer
  • Hellppppppppppp please thanks
    5·1 answer
  • Where is the frequency of ultrasound in relation to the range of human ability to hear
    12·2 answers
  • A 200-loop coil of cross sectional area 8.5 cm2 lies in the plane of the page. An external magnetic field of 0.060 T is directed
    5·1 answer
  • What do astonomers use to calculate the age of the universe
    12·1 answer
  • Hi
    13·2 answers
  • Use the drop-down menu to complete the statement. An electron in the first energy level of the electron cloud has an electron in
    12·2 answers
  • How will doctors most likely respond to someone who has an active case of drug-resistant tuberculosis?
    7·1 answer
  • HELP ASAP PLS. ILL GIVE BRAINLIEST
    11·1 answer
  • What mass has a rest energy of 100J?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!