Answer:
a) For y = 102 mA, R = 98.039 ohms
For y = 97 mA, R = 103.09 ohms
b) Check explanatios for b
Explanation:
Applied voltage, V = 10 V
For the first measurement, current
According to ohm's law, V = IR
R = V/I
Here,
For the second measurement, current
b)
A linear equation is of the form y = Gx
The nominal value of the resistance = 100 ohms
This question is incomplete, the complete question is;
Two plane mirrors intersect at right angles. A laser beam strikes the first of them at a point 11.5 cm from their point of intersection, as shown in the figure.
For what angle of incidence at the first mirror will this ray strike the midpoint of the second mirror (which is 28.0 cmcm long) after reflecting from the first mirror
Answer: angle of incidence is 39.4°
Explanation:
Given that;
two plain mirrors intersect at right angle (90°)
distance d = 11.5 cm
S = 28.0 cm
Now the angle that the reflection ray males with first the mirror equal theta (∅)
so
tan∅ = (S/2) / d
tan∅ = (28/2) / 11.5
tan∅ = 14 / 11.5
tan∅ = 1.2173
∅ = tan⁻¹ (1.2173)
∅ = 50.6°
so angle of incidence = 90° - ∅
= 90° - 50.6°
= 39.4°
Therefore angle of incidence is 39.4°
Answer:
20 m/s
30 m/s
Explanation:
Given:
v₀ = -10 m/s
a = -9.8 m/s²
When t = 1 s:
v = v₀ + at
v = (-10 m/s) + (-9.8 m/s²) (1 s)
v = -19.8 m/s
When t = 2 s:
v = v₀ + at
v = (-10 m/s) + (-9.8 m/s²) (2 s)
v = -29.6 m/s
Rounded to one significant figures, the speed of the ball at 1 s and 2 s is 20 m/s and 30 m/s, respectively.
200 N, that is if the force is balanced and the wall doesn't move