There are two hydrogen and two oxygen molecules because the number next to the atomic number is how many there are.
Answer: one molecule of O2.
Explanation: sweet i just took a guess but I believe that if 3 o2 molecules - 2 h2 molecules I think that its just basic maths and it is C because 3-2 = 1 and its o2 remaining, sorry if I’m wrong.
Answer:
This question is incomplete, here's the complete question:
<em><u>"Suppose 0.0842g of potassium sulfate is dissolved in 50.mL of a 52.0mM aqueous solution of sodium chromate. Calculate the final molarity of potassium cation in the solution. You can assume the volume of the solution doesn't change when the potassium sulfate is dissolved in it. Round your answer to 2 significant digits."</u></em>
Explanation:
Reaction :-
K2SO4 + Na2CrO4 ------> K2CrO4 + Na2SO4
Mass of K2SO4 = 0.0842 g, Molar mass of K2SO4 = 174.26 g/mol
Number of moles of K2SO4 = 0.0842 g / 174.26 g/mol = 0.000483 mol
Concentration of Na2CrO4 = 52.0 mM = 52.0 * 10^-3 M = 0.052 mol/L
Volume of Na2CrO4 solution = 50.0 ml = 50 L / 1000 = 0.05 L
Number of moles of Na2CrO4 = 0.05 L * 0.052 mol/L = 0.0026 mol
Since number of moles of K2SO4 is smaller than number of moles Na2CrO4, so 0.000483 mol of K2SO4 will react with 0.000483 mol of Na2CrO4 will produce 0.000483 mol of K2CrO4.
0.000483 mol of K2CrO4 will dissociate into 2* 0.000483 mol of K^+
Final concentration of potassium cation
= (2*0.000483 mol) / 0.05 L = 0.02 mol/L = 0.02 M
Answer:
7.335 moles of Cl₂ are required to react with 4.89 miles of Al.
Explanation:
Given data:
Moles of Al = 4.89 mol
Number of moles of Cl₂ required = ?
Solution:
Chemical equation:
2Al + 3Cl₂ → 2AlCl₃
Now we will compare the moles of Al and chlorine from balance chemical equation.
Al : Cl₂
2 : 3
4.89 : 3/2×4.89 =7.335 mol
Thus, 7.335 moles of Cl₂ are required to react with 4.89 miles of Al.
The shells further away from the nucleus are LARGER and can hold MORE electrons