Answer:
A) Fb = 671.3 N
B) The diver will sink.
Explanation:
A)
The buoyant force applied on an object by a fluid is given by the following formula:
Fb = Vρg
where,
Fb = Buoyant Force = ?
V = Volume of the water displaced by the object = 68.5 L = 0.0685 m³
ρ = Density of Water = 1000 kg/m³
g = 9.8 m/s²
Therefore,
Fb = (0.0685 m³)(1000 kg/m³)(9.8 m/s²)
<u>Fb = 671.3 N</u>
B)
Now, in order to find out whether the diver sinks or float, we need to find weight of the diver with gear.
W = mg = (71.8 kg)(9.8 m/s²)
W = 703.64 N
Since, W > Fb. Therefore, the downward force of weight will make the diver sink.
<u>The diver will sink.</u>
Answer: They are identical brightness
Explanation:
If the lights are assumed to be resistance bulbs
Each light has the same current and will each drop one third of the supply voltage.
Your answer would be D. Transpiration
Answer:
0.0928km/min (4dp)
Explanation:
To find the jogger's speed in km per minute, we just need to divide the number of km jogged by the time in minutes it took to jog that distance. This will give us the distance they jogged every minute which is their speed.
4km in 32 minutes:
4/32 = 0.125km/min
2km in 22 minutes:
2/22 = 0.091 (3dp)km/min
1km in 16 minutes:
0.0625km/min
Now to find the average speed of these 3 speeds, we just add them all together and divide by how many values there are (3 values).
Average (mean) = 
Average = 0.2785/3
Average speed of jogger = 0.0928 (4dp) km/min
Hope this helped!
Is there any possible chance that at some point in your science
studies, sometime before you were given this question for your
homework, that maybe you might have encountered this formula
for the period of a simple pendulum ?
Period = (2 pi) √(length/gravity) .
If the length is 0.23 meter, and the
acceleration of gravity is 9.8 m/s²,
then the period is
= (2 pi) √(0.23/9.8)
= 0.963... second (rounded)
That's how long it takes for a simple pendulum, 23cm long,
hanging on a massless string and not swinging too far to
the side, to complete one full swing left and right.
Now, if you can figure out how many periods of 0.963 second
there are in 30 seconds, you'll have your answer. I'll leave
that part of it to you.