Answer:
96%
Explanation
Let A the total area of the galaxy, is modeled as a disc:
A = πR^2 = π (25 kpc)^2
And let a be the area that astronomers are able to see:
a = πr^2 = π(5 kpc)^2
The percentage that can be seen is equal to 100 times the ratio of the areas, of the galaxy and the "visible" part:
P = 100 a/A = (5/25)^2 = 100/25 = 4%
Therefore, the percentage of the galaxy not included, i.e. not seen is:
(100-4)% = 96%
Answer:
1.38*10^18 kg
Explanation:
According to the Newton's law of universal gravitation:

where:
G= Gravitational constant (6.674×10−11 N · (m/kg)2)
ma= mass of the astronaut
mp= mass of the planet

so:

The characteristics of standing waves allows to find the result for the speed of the wave is:
- The speed wave is: v = 10 m / s
The wave is a way of transmitting energy without mass displacement, , in the attachment we can see a diagram of the standing wave.
Each cycle corresponds to half a wavelength, they indicate that the frequency is 2.50 Hz and there are three cycles, so the wavelength is:
L =
λ = 2L/n
λ = 2 6 /3
λ = 4 m
Wave speed is related to wavelength and frequency
v = λ f
v = 4 2.5
v = 10 m / s
In conclusion, using the characteristics of standing waves we can find the result for the speed of the wave is:
- The wave speed is: v = 10 m / s
Learn more here: brainly.com/question/12536719
Oooooo there's a spongy bone? that's cool! Lol okay okay, I will research it and help you out.
Here's what I found:
Cancellous bone<span>, also known as </span>spongy<span> or </span>trabecular bone<span>, is one of the </span>two<span> types of </span>bone<span> tissue found in the human body. ... It is very porous and contains red </span>bone<span>marrow, where blood cells are made.</span>
The resistance of a given conductor depends on its electrical resistivity (
), its length(L) and its cross-sectional area (A), as follows:

In this case, we have
,
and
. So, the total resistance of the wire with length of 138m is:
