Velocity =2 pie*r/t
distance = 2 (pie) r
accelaretion =distance/t2
f=m*v2/r
v=square root of Fr/m
Complete Question:
Given
at a point. What is the force per unit area at this point acting normal to the surface with
? Are there any shear stresses acting on this surface?
Answer:
Force per unit area, 
There are shear stresses acting on the surface since 
Explanation:
![\sigma = \left[\begin{array}{ccc}10&12&13\\12&11&15\\13&15&20\end{array}\right]](https://tex.z-dn.net/?f=%5Csigma%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D10%2612%2613%5C%5C12%2611%2615%5C%5C13%2615%2620%5Cend%7Barray%7D%5Cright%5D)
equation of the normal,
![\b n = \left[\begin{array}{ccc}\frac{1}{\sqrt{2} }\\0\\\frac{1}{\sqrt{2} }\end{array}\right]](https://tex.z-dn.net/?f=%5Cb%20n%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%5C%5C0%5C%5C%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%5Cend%7Barray%7D%5Cright%5D)
Traction vector on n, 
![T_n = \left[\begin{array}{ccc}10&12&13\\12&11&15\\13&15&20\end{array}\right] \left[\begin{array}{ccc}\frac{1}{\sqrt{2} }\\0\\\frac{1}{\sqrt{2} }\end{array}\right]](https://tex.z-dn.net/?f=T_n%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D10%2612%2613%5C%5C12%2611%2615%5C%5C13%2615%2620%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%5C%5C0%5C%5C%5Cfrac%7B1%7D%7B%5Csqrt%7B2%7D%20%7D%5Cend%7Barray%7D%5Cright%5D)
![T_n = \left[\begin{array}{ccc}\frac{23}{\sqrt{2} }\\0\\\frac{27}{\sqrt{33} }\end{array}\right]](https://tex.z-dn.net/?f=T_n%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B23%7D%7B%5Csqrt%7B2%7D%20%7D%5C%5C0%5C%5C%5Cfrac%7B27%7D%7B%5Csqrt%7B33%7D%20%7D%5Cend%7Barray%7D%5Cright%5D)

To get the Force per unit area acting normal to the surface, find the dot product of the traction vector and the normal.


If the shear stress,
, is calculated and it is not equal to zero, this means there are shear stresses.

![\tau = [\frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z] - 28( (1/ \sqrt{2} ) \b e_x + (1/ \sqrt{2}) \b e_z)\\\\\tau = [\frac{23}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{33}{\sqrt{2} } \b e_z] - [ (28/ \sqrt{2} ) \b e_x + (28/ \sqrt{2}) \b e_z]\\\\\tau = \frac{-5}{\sqrt{2} } \b e_x + \frac{27}{\sqrt{2} } \b e_y + \frac{5}{\sqrt{2} } \b e_z](https://tex.z-dn.net/?f=%5Ctau%20%3D%20%20%5B%5Cfrac%7B23%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_x%20%2B%20%5Cfrac%7B27%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_y%20%2B%20%5Cfrac%7B33%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_z%5D%20-%2028%28%20%281%2F%20%5Csqrt%7B2%7D%20%29%20%5Cb%20e_x%20%2B%20%281%2F%20%5Csqrt%7B2%7D%29%20%5Cb%20e_z%29%5C%5C%5C%5C%5Ctau%20%3D%20%20%5B%5Cfrac%7B23%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_x%20%2B%20%5Cfrac%7B27%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_y%20%2B%20%5Cfrac%7B33%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_z%5D%20-%20%5B%20%2828%2F%20%5Csqrt%7B2%7D%20%29%20%5Cb%20e_x%20%2B%20%2828%2F%20%5Csqrt%7B2%7D%29%20%5Cb%20e_z%5D%5C%5C%5C%5C%5Ctau%20%3D%20%20%5Cfrac%7B-5%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_x%20%2B%20%5Cfrac%7B27%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_y%20%2B%20%5Cfrac%7B5%7D%7B%5Csqrt%7B2%7D%20%7D%20%5Cb%20e_z)

Since
, there are shear stresses acting on the surface.
N or joule cuz joule is newton’s
The characteristics of the scalar product allows to find the angle between the two vectors is:
The scalar product is the product between two vectors whose result is a scalar.
A . B = |A| |B| cos θ
Where A and B are the vectors, |A| and |B| are the modules of the vectors and θ at the angle between them.
The vector is given in Cartesian coordinates and the unit vectors in these coordinates are perpendicular.
i.i = j.j = 1
i.j = 0
A . B = (4 i - 4j). * -5 i + 7j)
A . B = - 4 5 - 4 7
A. B = -48
We look for the modulus of each vector.
|A| =
|A| =
|A| = 4 √2
|B| =
|B| = 8.60
We substitute.
-48 = 4√2 8.60 cos θ
-48 = 48.66 cos θ
θ = cos⁻¹
θ = 170º
In conclusion using the dot product we can find the angle between the two vectors is:
Learn more about the scalar product here: brainly.com/question/1550649
Answer:
Five Characteristics of a Mineral
Minerals Are Natural. You must find minerals in nature; substances concocted in laboratories don't qualify. ...
Minerals Are Inorganic. ...
Minerals Are Solids. ...
Definite Chemical Composition. ...
Crystalline Structure.
These are just some examples.
Explanation: