Dont really understand what youre asking but switches can be used to turn things on and off.
Answer:
169.74 N
Explanation:
Given,
Mass of the girl = 30 Kg
angle of the rope with vertical, θ = 30°
equating the vertical component of the tension
vertical component of the tension is equal to the weight of the girl.
T cos θ = m g
T cos 30° = 30 x 9.8
T = 339.48 N
Tension on the two ropes is equal to 339.48 N
Tension in each of the rope = T/2
= 339.48/2 = 169.74 N
Hence, the tension in each of the rope is equal to 169.74 N
Answer with Explanation:
We are given that
Weight of an ore sample=17.5 N
Tension in the cord=11.2 N
We have to find the total volume and the density of the sample.
We know that
Tension, T=
=buoyancy force
T=Tension force
W=Weight
By using the formula

N

Where
=Volume of object
=Density of water
=Acceleration due to gravity
Substitute the values then we get


Volume of sample=
Density of sample,
Where mass of ore sample=1.79 kg
Substitute the values then, we get

Density of the sample=
Answer:
Hello, how's your day going?
if humanity came together and made a base on the moon, it would be revolutionary. The point of a base on the moon would have multiple purposes. for example, some think that the moon contains valuable metals such as iron and titanium. a base would serve as a place for workers harvesting metals to rest. Obviously or not most of the iron harvesting would be done automatically by robots and such.
If such a base were constructed on the moon, it would be the begining of people living on other worlds and would be a great start for a base on Mars.
Hope it helped
Spiky Bob
Answer:
4.2 is the answer
Explanation
The image formed in a plane mirror is an equal distance behind the mirror as the object in front of it.
Step 1: the equation to this problem would be: 8.4/2
Step 2: 8.4 ÷ 2 = 4.2