The average density of the material from which the coin is made is 9.67 g/cm³.
<h3>Volume of the coin</h3>
The volume of the coin at the given diameter is calculated as follows;
V = Ah
where;
- A is area of the coin
- h is the thickness of the coin
V = πd²/4 x h
V = π(2.8)²/4 x (0.21 cm)
V = 1.293 cm³
<h3>average density of the coin</h3>
The average density of the material from which the coin is made is calculated as follows;
density = mass/volume
density = 12.5 g / (1.293 cm³)
density = 9.67 g/cm³
Thus, the average density of the material from which the coin is made is 9.67 g/cm³.
Learn more about average density here: brainly.com/question/1354972
#SPJ1
Answer:
Add the two speeds together.
Then, divide the sum by two. This will give you the average speed for the entire trip. So, if Ben traveled 40 mph for 2 hours, then 60 mph for another 2 hours, his average speed is 50 mph.
<h2><em>The Doppler effect is a change in the frequency of sound waves that occurs when the source of the sound waves is moving relative to a stationary listener. As the source of sound waves approaches a listener, the sound waves get closer together, increasing their frequency and the pitch of the sound.</em></h2><h2><em>HOP</em>E IT HELPS </h2><h2>THANK YOU </h2>
Answer:
ρ/ρ2 = 3 / R₀ the two densities are different
Explanation:
Density is defined as
ρ = M / V
As the nucleus is spherical
V = 4/3 π r³
Let's replace
ρ = A / (4/3 π R₀³)
ρ = ¾ A / π R₀³
b)
ρ2 = F / area
The area of a sphere is
A = 4π R₀²
ρ2 = F / 4π R₀²
ρ2 = F / 4π R₀²
Atomic number is the number of protons in the nucleon in not very heavy nuclei. This number is equal to the number of neutrons, but changes in heavier nuclei, there are more neutrons than protons.
Let's look for the relationship of the two densities
ρ/ρ2 = ¾ A / π R₀³ / (F / 4π R₀²)
ρ /ρ2 = 3 (A / F) (1 / R₀)
In this case it does not say that the nucleon number is A (F = A), the relationship is
ρ/ρ2 = 3 / R₀
I see that the two densities are different
That just depends on the mass of the object and I think it will accelerate forwards