The change in pH of a 1.00 L of a buffered solution preparing by mixing 0.50 M acetic acid (Ka = 1.8 x 10^-5) and 0.50 M sodium acetate when 0.010 mole of NaOH is added is 4.75
when the same amount 0.010 mole of NaOH was added to 1.00 L of water the pH = 12
Explanation:
given that:
concentration of acetic acid = 0.50 M
Concentration of base sodium acetate = 0.50 M
ka = 1.8 x 10^-5)
pka = -log [ka]
pka = 4.74
From Henderson-Hasselbalch Equation:
pH = pKa + log ![\frac{[base]}{[acid]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D)
pH = 4.74 + Log ![\frac{[0.5]}{[0.5]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5B0.5%5D%7D%7B%5B0.5%5D%7D)
pH = 4.74 + 0
pH = 4.74
Number of moles of NaOH = 0.010 moles
volume 1 litre
molarity = 0.010 M
Moles of acetic acid and sodium acetate before addition of NaOH
FORMULA USED:
molarity = 
acetic acid,
0.5 = number of moles
0.5 is the number of moles of sodium acetate.
number of moles of NaOH 0.010 moles
NaOH reacts in 1:1 molar ratio with acetic acid so
number of moles in acetic acid = 0.5 - 0.010 = 0.49
number of moles in sodium acetate = 0.5 +0.010 = 0.51
new pH
pH = pKa + log ![\frac{[base]}{[acid]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Bbase%5D%7D%7B%5Bacid%5D%7D)
pH= 4.74 + log[0.51] - log[0.49]
pH= 4.75
PH of NaOH of 0.01 M (BASE)
pOH = -Log[0.01]
pOH = 2
pH can be calculated as
14= pH +pOH
pH= 14-2
pH = 12
Answer:
The 150 g Al will reach a higher temperature.
Explanation:
- The amount of heat added to a substance (Q) can be calculated from the relation:
<em>Q = m.c.ΔT.</em>
where, Q is the amount of heat added,
m is the mass of the substance,
c is the specific heat of the substance,
ΔT is the temperature difference (final T - initial T).
Since, Q and c is constant, ΔT will depend only on the mass of the substance (m).
∵ ΔT is inversely proportional to the mass of the substance.
<em>∴ The piece with the lowest mass (150.0 g) will reach a higher temperature than that of a higher mass (250.0 g).</em>
<em>So, the right choice is: The 150 g Al will reach a higher temperature.</em>
Answer:
The density of block is 2 g/mL.
Explanation:
Density:
Density is equal to the mass of substance divided by its volume.
Units:
SI unit of density is Kg/m3.
Other units are given below,
g/cm3, g/mL , kg/L
Formula:
D=m/v
D= density
m=mass
V=volume
Symbol:
The symbol used for density is called rho. It is represented by ρ. However letter D can also be used to represent the density.
Given data:
mass of block = 12 g
volume = 6 mL
density = ?
Now we will put the values in the formula,
d= m/v
d = 12 g/ 6 mL
d = 2 g/mL
so, the density of block is 2 g/mL .
Answer: Bohr proposed his quantized shell model of the atom to explain how electrons can have stable orbits around the nucleus.
so C would seems to be right.
Explanation: The energy of an electron depends on the size of the orbit and is lower for smaller orbits. Radiation can occur only when the electron jumps from one orbit to another. The atom will be completely stable in the state with the smallest orbit, since there is no orbit of lower energy into which the electron can jump.
Galaxy Formation. One says that galaxies were born when vast clouds of gas and dust collapsed under their own gravitational pull, allowing stars to form. The other, which has gained strength in recent years, says the young universe contained many small "lumps" of matter, which clumped together to form galaxies.