Explanation:
The answer would be B.
As paramagnetic with 3 unpaired electrons. Since there are 6 ligands around the Co+2 ion it isoctahedral and these ligands are neutral. This makes the overall charge on the complex +2 and therefore comes from the configuration for Co+2 which is [Ar] 3d7. Since it is in high spin you must fill all the orbitals with at least one electron and then pair up any that remain. If you do this, 3 unpaired electrons remain. Para magnetism occurs in substances with unpaired electrons.
Molar mass :
Li₂S = <span>45.947 g/mol
AlCl</span>₃ = <span>133.34 g/mol
</span><span>3 Li</span>₂<span>S + 2 AlCl</span>₃<span> = 6 LiCl + Al</span>₂S₃
3 * 45.947 g Li₂S ----------> 2 * <span>133.34 g AlCl</span>₃
1.084 g Li₂S ----------------> ?
Mass Li₂S = 1.084 * 2 * 133.34 / 3 * 45.947
Mass Li₂S = 289.08112 / 137.841
Mass Li₂S = 2.0972 g
hope this helps!
Answer:
W = -120 KJ
Explanation:
Since the piston–cylinder assembly undergoes an isothermal process, then the temperature is constant.
Thus; T1 = T2 = 400K
change in entropy; ΔS = −0.3 kJ/K
Formula for change in entropy is written as;
ΔS = Q/T
Where Q is amount of heat transferred.
Thus;
Q = ΔS × T
Q = -0.3 × 400
Q = -120 KJ
From the first law of thermodynamics, we can find the workdone from;
Q = ΔU + W
Where;
ΔU is Change in the internal energy
W = Work done
Now, since it's an ideal gas model, the change in internal energy is expressed as;
ΔU = m•C_v•ΔT
Where;
m is mass
C_v is heat capacity at constant volume
ΔT is change in temperature
Now, since it's an isothermal process where temperature is constant, then;
ΔT = T2 - T1 = 0
Thus;
ΔU = m•C_v•ΔT = 0
ΔU = 0
From earlier;
Q = ΔU + W
Thus;
-120 = 0+ W
W = -120 KJ
Answer: 2 C2H4 + 6 O2 => 4 CO2 + 4 H2O
Explanation:The coefficient are as follows: 2: 6: 4: 4
Each atom on the reactant and product side are equal.
Reactant Product
C 2x2 = 4 4x1 = 4
H 2x4 = 8 4x2 = 8
O 6x2 = 12 (4x2) + 4 = 12
Answer: The empirical formula is 
Explanation:
If percentage are given then we are taking total mass is 100 grams.
So, the mass of each element is equal to the percentage given.
Mass of Br= 58.37 g
Mass of F = (100-58.37) = 41.63 g
Step 1 : convert given masses into moles.
Moles of Br=
Moles of F =
Step 2 : For the mole ratio, divide each value of moles by the smallest number of moles calculated.
For Br = 
For F = 
The ratio of Br: F= 1 : 3
Hence the empirical formula is 