Answer:
You drop a rock from rest out of a window on the top floor of a building, 30.0 m above the ground. When the rock has fallen 3.00 m, your friend throws a second rock straight down from the same window. You notice that both rocks reach the ground at the exact same time. What was the initial velocity of the ...... rest out of a window on the top floor of a building, 30.0m above the ground. ... You Notice That Both Rocks Reach The Ground At The Exact Same Time. ... You drop a rock from rest out of a window on the top floor of a building, 30.0m ... When the rock has fallen 3.20 m, your friend throws a second rock straight down from ...
Answer:
Hiii how are you <u>doing?</u><u>?</u><u>I </u><u>don't</u><u> </u><u>understand</u><u> </u><u>that</u>
Since we are only looking at the vertical height, we can use the free fall equation to find the height:
h = 0.5*g*t^2, where h is height in m, g is acceleration due to gravity (9.81 m/s^2), and t is time in seconds
h = 0.5*(9.81 m/s^2)*(3.7 s)^2
h = 67.15 m
Therefore, the 7th floor window is 67.15 m above ground level.
Answer:
The product of mass and velocity is the correct answer
Explanation:
Momentum is defined as mass × velocity
p = mv
Jdkdibdoodbejdodjjdjsjsisjbdodoshdbbdd