Answer:
1.21m
Explanation:
If two speakers are generating a frequency of 280Hz, the smallest separation distance between the speakers that will produce destructive interference at a listener standing in front of them is also known as the wavelength of the sound wave generated.
Using the expression;
Velocity v = frequency f × wavelength ¶
Given frequency = 280Hz, speed of sound v = 338m/s
Substituting this data's in the expression given to get the wavelength will give;
¶ = v/f
¶ = 338/280
¶ = 1.21m
The smallest separation between the speakers that will produce the interference is 1.21m
Answer:
Approximately (assuming that the melting point of ice is .)
Explanation:
Convert the unit of mass to kilograms, so as to match the unit of the specific heat capacity of ice and of water.
The energy required comes in three parts:
- Energy required to raise the temperature of that of ice from to (the melting point of ice.)
- Energy required to turn of ice into water while temperature stayed constant.
- Energy required to raise the temperature of that newly-formed of water from to .
The following equation gives the amount of energy required to raise the temperature of a sample of mass and specific heat capacity by :
,
where
- is the specific heat capacity of the material,
- is the mass of the sample, and
- is the change in the temperature of this sample.
For the first part of energy input, whereas . Calculate the change in the temperature:
.
Calculate the energy required to achieve that temperature change:
.
Similarly, for the third part of energy input, whereas . Calculate the change in the temperature:
.
Calculate the energy required to achieve that temperature change:
.
The second part of energy input requires a different equation. The energy required to melt a sample of mass and latent heat of fusion is:
.
Apply this equation to find the size of the second part of energy input:
.
Find the sum of these three parts of energy:
.
Answer:
option D
Explanation:
this is because it occurs in many different dimensions, including biological, cognitive and socioemotional. this is also the answer on apex.
6 is the answer I remember the answer from when I took this and it was easy
Answer:
The two forces acting on rockets at the moment of launch are the thrust upwards and the weight downwards. Weight is the force due to gravity and is calculated (at the Earth’s surface) by multiplying the mass (kilograms) by 9.8.The resultant force on each rocket is calculated using the equation resultant force = thrust – weight.
Hopefully, this answer helps you! :)