1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MrRissso [65]
3 years ago
15

A car was moving at 14 m/s After 30 s, its speed increased to 20 m/s. What was the acceleration during this time ( need help fas

t!!!)
Physics
1 answer:
Arada [10]3 years ago
7 0

Answer:let initial velocity u=14m/s

Final velocity v=20m/s

Time taken t=30

Acceleration =a

V=u +at

a= (20-14)/30

a=0.2m/s^2

Explanation:

Acceleration is the change in velocity with respect to time.

You might be interested in
A motorcycle at a stoplight takes 4.22 seconds to accelerate 28.0 m/s after the light turns green. what is the acceleration?
stira [4]
Acceleration=velocity/time
acceleration=28/4.22
therefore, acceleration=6.64
4 0
3 years ago
A 50.0 N box sliding on a rough horizontal floor, and the only horizontal force acting on it is friction. You observe that at on
Vikki [24]

Answer:

-4.0 N

Explanation:

Since the force of friction is the only force acting on the box, according to Newton's second law its magnitude must be equal to the product between mass (m) and acceleration (a):

F_f = ma (1)

We can find the mass of the box from its weight: in fact, since the weight is W = 50.0 N, its mass will be

m=\frac{W}{g}=\frac{50.0 N}{9.8 m/s^2}=5.1 kg

And we can fidn the acceleration by using the formula:

a=\frac{v-u}{t}

where

v = 0 is the final velocity

u = 1.75 m/s is the initial velocity

t = 2.25 s is the time the box needs to stop

Substituting, we find

a=\frac{0-1.75 m/s}{2.25 s}=-0.78 m/s^2

(the acceleration is negative since it is opposite to the motion, so it is a deceleration)

Therefore, substituting into eq.(1) we find the force of friction:

F_f = (5.1 kg)(-0.78 m/s^2)=-4.0 N

Where the negative sign means the direction of the force is opposite to the motion of the box.

6 0
3 years ago
Unlike the idealized voltmeter, a real voltmeter has a resistance that is not infinitely large. part a a voltmeter with resistan
Margaret [11]
The EMF of the battery includes the force to to drive across its internal resistance. the total resistance:  
R = internal resistance r + resistance connected rv 
R = r + rv  
Now find the current:  
V 1= IR 
I = R / V1  
find the voltage at the battery terminal (which is net of internal resistance) using  
V 2= IR  
So the voltage at the terminal is:  
V = V2 - V1  
This is the potential difference vmeter measured by the voltmeter.
6 0
3 years ago
Read 2 more answers
HELP!!!! WILL MARK BRAINLIEST!!!! IF YOU LEAVE AN ANSWER EXPLAIN! THANKS
Travka [436]

Answer:

the answer is C

Explanation:

we know this because if you compare the graphs and look at the direction. it isn't always in the explanation or the few sentences they gave you at the top. also, look at the waves, you can see in Davids drawing that it is directly straight up, A and B do not represent that. A isn't even a valid answer. Notice also in A that the arrow is going in the completely different direction than in Davids drawing. B is also going a different direction even though it is only turned a little bit although if it was straight up like Davids drawing then it would most likely be a correct answer. C does have one arrow going a different direction but look at how it has two, showing in which if the waves were to turn then the arrow is still valid

7 0
3 years ago
To maintain a constant speed, the force provided by a car's engine must equal the drag force plus the force of friction of the r
sweet [91]

Answer:

a). 53.75 N and 101.92 N

b). 381.44 N and 723.25 N

Explanation:

V= 77 \frac{km}{h}* \frac{1h}{3600 s} *\frac{1000m}{1 km} = 21.38 \frac{m}{s} \\V=106 \frac{km}{h}* \frac{1h}{3600 s} *\frac{1000m}{1 km} = 29.44 \frac{m}{s}

a).

ρ= 1.2 \frac{kg}{m^{3} }, A_{t}= 0.7 m^{2}, D_{t}= 0.28

F_{t1} = \frac{1}{2} * D_{t} * A_{t}* p_{t}* v_{t}^{2}

F_{t1} = \frac{1}{2} * 0.28 * 0.7m^{2} * 1.2\frac{kg}{m^{3} }* 21.38^{2}= 53.75 N

F_{t1} = \frac{1}{2} * 0.28 * 0.7m^{2} * 1.2\frac{kg}{m^{3} }* 29.44^{2}= 101.92 N

b).

ρ= 1.2 \frac{kg}{m^{3} }, A_{h}= 2.44 m^{2}, D_{h}= 0.57

F_{t1} = \frac{1}{2} * D_{h} * A_{h}* p_{h}* v_{h}^{2}

F_{t1} = \frac{1}{2} * 0.57 * 2.44 m^{2} * 1.2\frac{kg}{m^{3} }* 21.38^{2}= 381.44 N

F_{t1} = \frac{1}{2} * 0.57 * 2.44 m^{2} * 1.2\frac{kg}{m^{3} }* 29.44^{2}= 723.25 N

6 0
3 years ago
Other questions:
  • What will happen to the speed of an object if the net force is in the direction of the motion?
    8·2 answers
  • Which of the following objects have gravitational potential energy?
    12·2 answers
  • As you jump on a pogo stick where is the potential energy the greatest?
    14·1 answer
  • You hold a 0.125 kg glider A and a 0.500 kg glider B at rest on an air track with a compressed spring of negligible mass between
    13·1 answer
  • How are we able to break wire by repeated bending​
    15·2 answers
  • Explain in detail why insulating you’re house will reduce your energy bills.
    5·1 answer
  • Why is the speed of the earths plate measured in centimeter per year instead of in meter per second?
    6·1 answer
  • When a substance changes states, it <br>either or energy​
    15·1 answer
  • - A 9,300 kg. railroad car traveling at a velocity of 15m/s strikes a second boxcar
    6·1 answer
  • 2. A science book is being pushed across a table. Can the book have a constant speed and a
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!