<h3>Given, </h3>
Force,F = 4000 N
Area,a = 50 m²
<h3>We know that, </h3>
Pressure = Force/Area
★ Putting the values in the above formula,we get:


Answers:
a) -171.402 m/s
b) 17.49 s
c) 1700.99 m
Explanation:
We can solve this problem with the following equations:
(1)
(2)
(3)
Where:
is the bomb's final jeight
is the bomb'e initial height
is the bomb's initial vertical velocity, since the airplane was moving horizontally
is the time
is the acceleration due gravity
is the bomb's range
is the bomb's initial horizontal velocity
is the bomb's fina velocity
Knowing this, let's begin with the answers:
<h3>b) Time</h3>
With the conditions given above, equation (1) is now written as:
(4)
Isolating
:
(5)
(6)
(7)
<h3>a) Final velocity</h3>
Since
, equation (3) is written as:
(8)
(9)
(10) The negative sign ony indicates the direction is downwards
<h3>c) Range</h3>
Substituting (7) in (2):
(11)
(12)
Kinetic energy= 1/2 m v^2
so... 1/2(1350)(12^2)
kinetic energy = 97200Joules
When the velocity of an object changes, it is acted upon by a force
The deceleration experienced by the gymnast is the 9 times of the acceleration due to gravity.
Now from Newton`s first law, the net force on gymnast,

Here, W is the weight of the gymnast and a is the acceleration experienced by the gymnast (
acceleration due to gravity)
Therefore,
OR 
Given
and
Substituting these values in above formula and calculate the force exerted by the gymnast,

