Answer:
λ = 396.7 nm
Explanation:
For this exercise we use the diffraction ratio of a grating
d sin θ = m λ
in general the networks works in the first order m = 1
we can use trigonometry, remembering that in diffraction experiments the angles are small
tan θ = y / L
tan θ =
= sin θ
sin θ = y / L
we substitute
= m λ
with the initial data we look for the distance between the lines
d =
d = 1 656 10⁻⁹ 1.00 / 0.600
d = 1.09 10⁻⁶ m
for the unknown lamp we look for the wavelength
λ = d y / L m
λ = 1.09 10⁻⁶ 0.364 / 1.00 1
λ = 3.9676 10⁻⁷ m
λ = 3.967 10⁻⁷ m
we reduce nm
λ = 396.7 nm
Answer:
a) 31.4 m/s
b) 50.2 m
Explanation:
a) When an object is free falling, its speed is determined by the gravity force giving it acceleration. Equation for the velocity of free fall started from the rest is:
v = g • t
g - is gravitational acceleration which is 9.81 m/s^2, sometimes rounded to 10
t - is the time of free fall
So:
v = 9.81 m/s^2 • 3.2
v = 31.4 m/s ( if g is rounded to 10, then the velocity is 10 • 3.2 = 32 m/s)
b) To determine the distance crossed in free fall we use the equation:
s = v0 + gt^2/2
v0 - is the starting velocity (since object started fall from rest, its v0 is 0)
s = gt^2/2
s = 9.81 m/s^2 • 3.2^2 / 2
s = 50.2 m (if we round g to 10 then the distance is 10 • 3.2^2/2 = 51.2 meters)
Answer:
GE = ME -
, which agrees with option C in your list.
Explanation:
The definition of Mechanical Energy (ME) of a system is the addition of the gravitational potential energy (GE) plus the kinetic energy (KE) of the system:
ME = GE + KE
Given that the KE is:
,
solving for GE in the formula above gives:
GE = ME - KE = ME -
, which agrees with option C
Answer:
1. 13..6 grams per centimeters cubed.
2. Mass = 400kg
3. Volume = 200cm = 2m
Explanation:
1. The conversion for kg/m^3 to g/cm^3 is divide by 1000.
2. 



3. 



. Methylated spirits have ethanol as a base but may include methyl alcohol (methanol) as part of the denaturing process.