Answer:
an artificial body placed in orbit around the earth or moon or another planet in order to collect information or for communication.
Explanation:
Look it up on google
Answer:
the angle of reflection equals the angle of incidence—θr = θi. The angles are measured relative to the perpendicular to the surface at the point where the ray strikes the surface.
Explanation:
A microscope uses a mirror to reflect light to the specimen under the microscope. ... An astronomical reflecting telescope uses a large parabolic mirror to gather dim light from distant stars. A plane mirror is used to reflect the image to the eyepiece.
Answer
given,
ω₁ = 0 rev/s
ω₂ = 6 rev/s
t = 11 s
Using equation of rotational motion
The angular acceleration is
ωf - ωi = α t
11 α = 6 - 0
= 0.545 rev/s²
The angular displacement
θ₁= ωi t + (1/2) α t²
θ₁= 0 + (1/2) (0.545)(11)^2
θ₁= 33 rev
case 2
ω₁ = 6 rev/s
ω₂ = 0 rev/s
t = 14 s
Using equation of rotational motion
The angular acceleration is
ωf - ωi = α t
14 α = 0 - 6
= - 0.428 rev/s²
The angular displacement
θ₂= ωi t + (1/2) α t²
θ₂= 6 x 14 + (1/2) (-0.428)(14)^2
θ₂= 42 rev
total revolution in 25 s is equal to
θ = θ₁ + θ₂
θ = 33 + 42
θ = 75 rev
Answer:
1.77 x 10^-8 C
Explanation:
Let the surface charge density of each of the plate is σ.
A = 4 x 4 = 16 cm^2 = 16 x 10^-4 m^2
d = 2 mm
E = 2.5 x 10^6 N/C
ε0 = 8.85 × 10-12 C2/N ∙ m2
Electric filed between the plates (two oppositively charged)
E = σ / ε0
σ = ε0 x E
σ = 8.85 x 10^-12 x 2.5 x 10^6 = 22.125 x 10^-6 C/m^2
The surface charge density of each plate is ± σ / 2
So, the surface charge density on each = ± 22.125 x 10^-6 / 2
= ± 11.0625 x 10^-6 C/m^2
Charge on each plate = Surface charge density on each plate x area of each plate
Charge on each plate = ± 11.0625 x 10^-6 x 16 x 10^-4 = ± 1.77 x 10^-8 C