1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ymorist [56]
2 years ago
11

A helicopter carrying Dr. Evil takes off with a constant upward acceleration of 5.0 m/s2. Secret agent Austin Powers jumps on ju

st as the helicopter lifts off the ground. After the two men struggle for 10.0 s, Powers shuts off the engine and steps out of the helicopter. Assume that the helicopter is in free fall after its engine is shut off, and ignore the effects of air resistance. (a) What is the maximum height above ground reached by the helicopter? (b) Powers deploys a jet pack strapped on his back 7.0 s after leaving the helicopter, and then he has a constant downward acceleration with magnitude 2.0 m/s2. How far is Powers above the ground when the helicopter crashes into the ground?
Physics
1 answer:
denpristay [2]2 years ago
5 0

Answer:

a) h=250\ m

b) \Delta h=0.0835\ m

Explanation:

Given:

  • upward acceleration of the helicopter, a=5\ m.s^{-2}
  • time after the takeoff after which the engine is shut off, t_a=10\ s

a)

<u>Maximum height reached by the helicopter:</u>

using the equation of motion,

h=u.t+\frac{1}{2} a.t^2

where:

u = initial velocity of the helicopter = 0 (took-off from ground)

t = time of observation

h=0+0.5\times 5\times 10^2

h=250\ m

b)

  • time after which Austin Powers deploys parachute(time of free fall), t_f=7\ s
  • acceleration after deploying the parachute, a_p=2\ m.s^{-2}

<u>height fallen freely by Austin:</u>

h_f=u.t_f+\frac{1}{2} g.t_f^2

where:

u= initial velocity of fall at the top = 0 (begins from the max height where the system is momentarily at rest)

t_f= time of free fall

h_f=0+0.5\times 9.8\times 7^2

h_f=240.1\ m

<u>Velocity just before opening the parachute:</u>

v_f=u+g.t_f

v_f=0+9.8\times 7

v_f=68.6\ m.s^{-1}

<u>Time taken by the helicopter to fall:</u>

h=u.t_h+\frac{1}{2} g.t_h^2

where:

u= initial velocity of the helicopter just before it begins falling freely = 0

t_h= time taken by the helicopter to fall on ground

h= height from where it falls = 250 m

now,

250=0+0.5\times 9.8\times t_h^2

t_h=7.1429\ s

From the above time 7 seconds are taken for free fall and the remaining time to fall with parachute.

<u>remaining time,</u>

t'=t_h-t_f

t'=7.1428-7

t'=0.1428\ s

<u>Now the height fallen in the remaining time using parachute:</u>

h'=v_f.t'+\frac{1}{2} a_p.t'^2

h'=68.6\times 0.1428+0.5\times 2\times 0.1428^2

h'=9.8165\ m

<u>Now the height of Austin above the ground when the helicopter crashed on the ground:</u>

\Delta h=h-(h_f+h')

\Delta h=250-(240.1+9.8165)

\Delta h=0.0835\ m

You might be interested in
What energy is present when a magnet is moving?
Vitek1552 [10]

Answer:

kinetic energy is when an object is moving

6 0
2 years ago
Which law states that the pressure and absolute temperature of a fixed quantity of gas are directly proportional under constant
Brrunno [24]

<u>Gay Lussac’s law</u> state that the pressure and absolute temperature of a fixed quantity of a gas are directly proportional under constant volume conditions.  

<h2>Further Explanation </h2><h3>Gay-Lussac’s law  </h3>
  • It states that at constant volume, the pressure of an ideal gas I directly proportional to its absolute temperature.
  • Thus, an increase in pressure of an ideal gas at constant volume will result to an increase in the absolute temperature.
<h3>Boyles’s law   </h3>
  • This gas law states that the volume of a fixed mass of a gas is inversely proportional to its pressure at constant absolute temperature.
  • Therefore, when the volume of an ideal gas is increased at constant temperature then the pressure of the gas will also increase.
<h3>Charles’s law </h3>
  • It states that the volume of a fixed mass of a gas is directly proportional to absolute temperature at constant pressure.
  • Therefore, an increase in volume of an ideal gas causes a corresponding increase in its absolute temperature and vice versa while the pressure is held constant.
<h3>Dalton’s law  </h3>
  • It is also known as the Dalton’s law of partial pressure. It states that the total pressure of a mixture of gases is always equivalent to the total sum of the partial pressures of individual component gases.
  • Partial pressure refers to the pressure of an individual gas if it occupies the same volume as the mixture of gases.

Keywords: Gas law, Gay-Lussac’s law, pressure, volume, absolute temperature, ideal gas

<h3>Learn more about: </h3>
  1. Gay-Lussac’s law: brainly.com/question/2644981
  2. Charles’s law: brainly.com/question/5016068
  3. Boyles’s law: brainly.com/question/5016068
  4. Dalton’s law: brainly.com/question/6491675

Level: High school  

Subject: Chemistry  

Topic: Gas laws  

Sub-topic: Gay-Lussac’s law  

8 0
3 years ago
Read 2 more answers
Janelle wants to buy some strings of decorative lights for her home. She is trying to decide between two strings of lights that
inysia [295]
If she has a choice and the wiring details are stated on the packaging,
then Janelle should look for lights that are wired in parallel within the
string, and she should avoid lights that are wired in series within the string. 

If a single light in a parallel string fails, then only that one goes out. 
The rest of the lights in the string continue to shimmer and glimmer.

If a single light in a series string fails, then ALL of the lights in that string
go out, and it's a substantial engineering challenge to determine which light
actually failed.
6 0
3 years ago
Read 2 more answers
Sam receives the kicked football on the 3 yd line and runs straight ahead toward the goal line before cutting to the right at th
Pie

Answer:

Distance: 21 yd, displacement: 15 yd, gain in the play: 12 yd

Explanation:

The distance travelled by Sam is just the sum of the length of each part of Sam's motion, regardless of the direction. Initially, Sam run from the 3 yd line to the 15 yd line, so (15-3)=12 yd. Then, he run also 9 yd to the right. Therefore, the total distance is

d = 12 + 9 = 21 yd

The displacement instead is a vector connecting the starting point with the final point of the motion. Sam run first 12 yd straight ahead and then 9 yd to the right; these two motions are perpendicular to each other, so we can find the displacement simply by using Pythagorean's theorem:

d=\sqrt{12^2+9^2}=15 yd

Finally, the yards gained by Sam in the play are simply given by the distance covered along the forward-backward direction only. Since Sam only run from the 3 yd line to the 15 yd line along this direction, then the gain in this play was

d = 15 - 3 = 12 yd

7 0
3 years ago
A 95.0kg weightlifter pushes on a 800,000 kg wall for 400s but it does not move. How much work does he do on the wall?
Soloha48 [4]
<span>The weightlifter does no work. Although he has exerted force, work is the product of force over distance. Since he has not moved the wall he has done no work.</span>
7 0
3 years ago
Other questions:
  • An element in group IIA would form a __________ ion while an element in group VIIA would form a(n) __________ ion.
    5·1 answer
  • Two workers pull horizontally on a heavy box, but one pulls twice as hard as the other. The larger pull is directed at 25.0 ∘ we
    8·2 answers
  • True or false. Lateral to the inguinal region is the coxal region, while superior to the scapular region is the dorsal region.
    14·1 answer
  • 1. In a Millikan type experiment, two horizontal plates are 2.5 cm apart. A latex sphere of
    11·1 answer
  • The FIRST space station placed into orbit around the earth followed by a team sent from earth to link up with the station was de
    6·2 answers
  • First to answer will be the brainliest I need the answer ASAP don't answer if you don't know the answer
    10·2 answers
  • The deep scattering layer (DSL):_________
    12·1 answer
  • Help please help me out with this
    11·1 answer
  • A plane mirror forms an image of an object because it ____________ light from the object.
    6·1 answer
  • What is the weight of a 63.7 kg person? ?N
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!