1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ymorist [56]
2 years ago
11

A helicopter carrying Dr. Evil takes off with a constant upward acceleration of 5.0 m/s2. Secret agent Austin Powers jumps on ju

st as the helicopter lifts off the ground. After the two men struggle for 10.0 s, Powers shuts off the engine and steps out of the helicopter. Assume that the helicopter is in free fall after its engine is shut off, and ignore the effects of air resistance. (a) What is the maximum height above ground reached by the helicopter? (b) Powers deploys a jet pack strapped on his back 7.0 s after leaving the helicopter, and then he has a constant downward acceleration with magnitude 2.0 m/s2. How far is Powers above the ground when the helicopter crashes into the ground?
Physics
1 answer:
denpristay [2]2 years ago
5 0

Answer:

a) h=250\ m

b) \Delta h=0.0835\ m

Explanation:

Given:

  • upward acceleration of the helicopter, a=5\ m.s^{-2}
  • time after the takeoff after which the engine is shut off, t_a=10\ s

a)

<u>Maximum height reached by the helicopter:</u>

using the equation of motion,

h=u.t+\frac{1}{2} a.t^2

where:

u = initial velocity of the helicopter = 0 (took-off from ground)

t = time of observation

h=0+0.5\times 5\times 10^2

h=250\ m

b)

  • time after which Austin Powers deploys parachute(time of free fall), t_f=7\ s
  • acceleration after deploying the parachute, a_p=2\ m.s^{-2}

<u>height fallen freely by Austin:</u>

h_f=u.t_f+\frac{1}{2} g.t_f^2

where:

u= initial velocity of fall at the top = 0 (begins from the max height where the system is momentarily at rest)

t_f= time of free fall

h_f=0+0.5\times 9.8\times 7^2

h_f=240.1\ m

<u>Velocity just before opening the parachute:</u>

v_f=u+g.t_f

v_f=0+9.8\times 7

v_f=68.6\ m.s^{-1}

<u>Time taken by the helicopter to fall:</u>

h=u.t_h+\frac{1}{2} g.t_h^2

where:

u= initial velocity of the helicopter just before it begins falling freely = 0

t_h= time taken by the helicopter to fall on ground

h= height from where it falls = 250 m

now,

250=0+0.5\times 9.8\times t_h^2

t_h=7.1429\ s

From the above time 7 seconds are taken for free fall and the remaining time to fall with parachute.

<u>remaining time,</u>

t'=t_h-t_f

t'=7.1428-7

t'=0.1428\ s

<u>Now the height fallen in the remaining time using parachute:</u>

h'=v_f.t'+\frac{1}{2} a_p.t'^2

h'=68.6\times 0.1428+0.5\times 2\times 0.1428^2

h'=9.8165\ m

<u>Now the height of Austin above the ground when the helicopter crashed on the ground:</u>

\Delta h=h-(h_f+h')

\Delta h=250-(240.1+9.8165)

\Delta h=0.0835\ m

You might be interested in
Eats plants and meats
VMariaS [17]
Omnivores e<span>at both plants and meats. </span>
8 0
2 years ago
Read 2 more answers
A meter stick balances at the 50.0-cm mark. If a mass of 50.0 g is placed at the 90.0-cm mark, the stick balances at the 61.3-cm
Airida [17]

Answer:

126.99115 g

Explanation:

50 g at 90 cm

Stick balances at 61.3 cm

x = Distance of the third 0.6 kg mass

Meter stick hanging at 50 cm

Torque about the support point is given by (torque is conserved)

mgl_1=Mgl_2\\\Rightarrow M=\dfrac{ml_1}{l_2}\\\Rightarrow M=\dfrac{50\times (61.3-90)}{50-61.3}\\\Rightarrow M=126.99115\ g

The mass of the meter stick is 126.99115 g

6 0
2 years ago
Read 2 more answers
When reading a buret, where is the initial and final volumes taken from? The top (where the zero is) or the bottom?. If the bure
liubo4ka [24]
<span>When reading a buret, the initial reading should be taken from the top of the glassware and the final volume should still taken at the top. If the buret is completely, the initial volume for most buret would be zero. though, there are some where their initial starts at 50 decreasing to zero.</span>
5 0
3 years ago
The unit of energy is a derived unit​
Tems11 [23]

Explanation:

<em>Hi</em><em>,</em><em> </em><em>there</em><em>!</em><em>!</em>

<em>Energy</em><em> </em><em>is</em><em> </em><em>defined</em><em> </em><em>as</em><em> </em><em>the</em><em> </em><em>capacity</em><em> </em><em>or</em><em> </em><em>ability</em><em> </em><em>to</em><em> </em><em>do</em><em> </em><em>work</em><em>.</em><em> </em><em>It's</em><em> </em><em>SI</em><em> </em><em>unit</em><em> </em><em>is</em><em> </em><em>Joule</em><em>.</em>

<em>here</em><em>,</em>

<em>Joule</em><em> </em><em>=</em><em> </em><em>(</em><em>kg</em><em>×</em><em>m</em><em>×</em><em>m</em><em>)</em><em>/</em><em>(</em><em>s</em><em>×</em><em>s</em><em>)</em>

<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em> </em><em>kg</em><em>×</em><em>m</em><em>^</em><em>2</em><em>/</em><em>s</em><em>^</em><em>2</em><em>.</em>

<em>Therefore</em><em>, </em><em> </em><em>the</em><em> </em><em>derived</em><em> </em><em>unit</em><em> </em><em>is</em><em> </em><em>kg</em><em>.</em><em>m</em><em>^</em><em>2</em><em> </em><em>by</em><em> </em><em>s</em><em>^</em><em>2</em><em>.</em>

<em>Hope it helps</em><em>.</em><em>.</em><em>.</em>

7 0
2 years ago
Mass of water= 357g density water= 1.0g/cm3
aliya0001 [1]

m=357g\\\\\rho=1.0\ \dfrac{g}{cm^3}\\\\\rho=\dfrac{m}{V}\to V=\dfrac{m}{\rho}\\\\\text{substitute}\\\\V=\dfrac{357g}{1.0\frac{g}{cm^3}}=375g\cdot1.0\dfrac{cm^3}{g}=375\ cm^3

8 0
3 years ago
Other questions:
  • Does the North Pole receive more daylight hours during Winter or Summer?
    11·2 answers
  • Deneb and the Sun are two stars. Deneb has a diameter that is 109-200 times greater than that of the sun. When seen from earth,
    11·1 answer
  • Which point lies on the line with point slope equation : y+5=2(x+8)
    9·2 answers
  • A 92-kg astronaut and a 2000-kg satellite are at rest relative to a space station. the astronaut pushes on the satellite, giving
    9·2 answers
  • A basketball star covers 2.70 m horizontally in a jump to dunk the ball (see figure). His motion through space can be modeled pr
    7·1 answer
  • How does water deposit sediment
    13·1 answer
  • Standard unit definition​
    9·2 answers
  • A machine is applying a torque to rotationally accelerate a metal disk during a manufacturing process. An engineer is using a gr
    8·2 answers
  • A car travels eastwards at 60km/h for 2h, then travels northwards at 20km/h for 8h. Find,
    13·1 answer
  • Anyone help me do this question.. am giving the brainliest
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!