1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ymorist [56]
2 years ago
11

A helicopter carrying Dr. Evil takes off with a constant upward acceleration of 5.0 m/s2. Secret agent Austin Powers jumps on ju

st as the helicopter lifts off the ground. After the two men struggle for 10.0 s, Powers shuts off the engine and steps out of the helicopter. Assume that the helicopter is in free fall after its engine is shut off, and ignore the effects of air resistance. (a) What is the maximum height above ground reached by the helicopter? (b) Powers deploys a jet pack strapped on his back 7.0 s after leaving the helicopter, and then he has a constant downward acceleration with magnitude 2.0 m/s2. How far is Powers above the ground when the helicopter crashes into the ground?
Physics
1 answer:
denpristay [2]2 years ago
5 0

Answer:

a) h=250\ m

b) \Delta h=0.0835\ m

Explanation:

Given:

  • upward acceleration of the helicopter, a=5\ m.s^{-2}
  • time after the takeoff after which the engine is shut off, t_a=10\ s

a)

<u>Maximum height reached by the helicopter:</u>

using the equation of motion,

h=u.t+\frac{1}{2} a.t^2

where:

u = initial velocity of the helicopter = 0 (took-off from ground)

t = time of observation

h=0+0.5\times 5\times 10^2

h=250\ m

b)

  • time after which Austin Powers deploys parachute(time of free fall), t_f=7\ s
  • acceleration after deploying the parachute, a_p=2\ m.s^{-2}

<u>height fallen freely by Austin:</u>

h_f=u.t_f+\frac{1}{2} g.t_f^2

where:

u= initial velocity of fall at the top = 0 (begins from the max height where the system is momentarily at rest)

t_f= time of free fall

h_f=0+0.5\times 9.8\times 7^2

h_f=240.1\ m

<u>Velocity just before opening the parachute:</u>

v_f=u+g.t_f

v_f=0+9.8\times 7

v_f=68.6\ m.s^{-1}

<u>Time taken by the helicopter to fall:</u>

h=u.t_h+\frac{1}{2} g.t_h^2

where:

u= initial velocity of the helicopter just before it begins falling freely = 0

t_h= time taken by the helicopter to fall on ground

h= height from where it falls = 250 m

now,

250=0+0.5\times 9.8\times t_h^2

t_h=7.1429\ s

From the above time 7 seconds are taken for free fall and the remaining time to fall with parachute.

<u>remaining time,</u>

t'=t_h-t_f

t'=7.1428-7

t'=0.1428\ s

<u>Now the height fallen in the remaining time using parachute:</u>

h'=v_f.t'+\frac{1}{2} a_p.t'^2

h'=68.6\times 0.1428+0.5\times 2\times 0.1428^2

h'=9.8165\ m

<u>Now the height of Austin above the ground when the helicopter crashed on the ground:</u>

\Delta h=h-(h_f+h')

\Delta h=250-(240.1+9.8165)

\Delta h=0.0835\ m

You might be interested in
At what time of day would you be most likely to find that the air over water is significantly warmer than the air over land near
Brut [27]

This would happen later at night or early in the morning.

The reason being land becomes warm and cold quicker than the water because of the heat capacity. So during the day water warms up because of sunlight but at night the land becomes a lot cooler as compared to the water which is still war. So the air over water is significantly warmer than the air over land.

4 0
3 years ago
Read 2 more answers
A baseball is thrown straight up from a building that is 25 meters tall with an initial velocity v = 10 m/s. How fast is it goin
Yanka [14]

Answer:-24,5m/s

Explanation: what we have here is a UALM with these gravity as acceleration (-9.8 m/s^2). The initial position is 25 m and initial speed is 10m/s.

Speed and gravity are increasing in the opposite direction, speed upwards and gravity downwards, while the position is also upwards, depending on your reference system.

The first thing I need to know is the maximum high it will reach.

Hmax=- S(0)^2/2g=

S= speed.

0= initial

G= gravity

Hm= 100/19,6= 5.1 m

So, the ball will go 5,1 m higher than the initial position, and from there it will fall free.

Then, I need to know how long it takes to fall. For that we use UALM equation:

X(t)= X(0) + S(0)*t + (A*t^2)/2.

X: position

S: speed

A: acceleration

T:time

0: initial

0 = 25m +10*t -(9.8 * t^2)/2

Solving the quadratic equation we get

T= 3,5 sec. ( Negative value for time is impossible)

So now we know that the ball to go up and then fall needs 3,5 sec.

Let's see how long it takes to go up:

30,1=25+10*t-4,9*t^2

0=-5,1+10*t-4,9*t^2

T= 1 sec. So it will take 1 sec to the ball to reach the maximum high and 0=speed and then it'll fall during the resting 2,5 sec

Finally, to know the speed just before it touches the ground, we use the following formula:

A= (St-S0)/t

-9.8m/s^2 = (St- 0m/s)/ 2,5s

-24,5 m/s= St

-24,5 m/s is the speed at 3,5 sec, which is the time just before falling

3 0
3 years ago
Can you please answer this question?
Sidana [21]
I think its b too but i may be wrong
5 0
3 years ago
A thin 1.5 mm coating of glycerine has been placed between two microscope slides of width 0.8 cm and length 3.9 cm . Find the fo
Radda [10]

The  force required to pull one of the microscope sliding at a constant speed of 0.28 m/s relative to the other is zero.

<h3>Force required to pull one end at a constant speed</h3>

The force required to pull one of the microscope sliding at a constant speed of 0.28 m/s relative to the other is determined by applying Newton's second law of motion as shown below;

F = ma

where;

  • m is mass
  • a is acceleration

At a constant speed, the acceleration of the object will be zero.

F = m x 0

F = 0

Thus, the  force required to pull one of the microscope sliding at a constant speed of 0.28 m/s relative to the other is zero.

Learn more about constant speed here: brainly.com/question/2681210

3 0
1 year ago
A swimming pool is 4.0 m in depth; a swimmer at this depth feels discomfort in the ear. Calculate the net force on a 0.50-cm-dia
Mashcka [7]

The net force on a 0.50-cm-diameter eardrum is mathematically given as

F= 0.76969 N

<h3>What is the net force on a 0.50-cm-diameter eardrum?</h3>

Generally, the equation for Pressure is  mathematically given as

P = ρgh

Therefore

P= 1000*9.8*4

P= 39200 Pa

Where

A= pi*(0.005/2)^2

Generally, the equation for Net force is  mathematically given as

F = PA

F= 39200 *( pi*(0.005/2)^2)

F= 0.76969 N

In conclusion, The net force is

F= 0.76969 N

Read more about Pressure

#SPJ1

5 0
1 year ago
Other questions:
  • 11. Maria left her house bicycling at 10 km/h. Her acceleration was 30 km/h2 . How fast was she bicycling when she arrived at sc
    8·1 answer
  • Anybody know the answer to this ?
    9·1 answer
  • For an object that is speeding up at a constant rate in the positive direction,
    11·1 answer
  • After a short time, the moving sled with the child aboard reached a rough level surface that exerts a constant frictional force
    8·2 answers
  • One way to measure g on another planet or moon by remote sensing is to measure how long it takes an object to fall a given dista
    9·1 answer
  • I need help ASAP.
    7·2 answers
  • In a circuit with one 12.0 resistor, a current of 0.500 A is flowing. This circuit is powered by a single
    6·1 answer
  • If a 2 kg spring is compressed by exerting a force of 10 newtons a distance of 50 cm how much work is done?
    14·1 answer
  • jonatha want to put ketchup o​​​​​n his hamburger.he truns the ketchup bottle at an angle toward his plate and smacks the bottom
    14·1 answer
  • Why is Newton’s cradle (Newton’s balls) described as an “almost-ideal” closed system? Explain your reasoning in one or two sente
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!