1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ymorist [56]
3 years ago
11

A helicopter carrying Dr. Evil takes off with a constant upward acceleration of 5.0 m/s2. Secret agent Austin Powers jumps on ju

st as the helicopter lifts off the ground. After the two men struggle for 10.0 s, Powers shuts off the engine and steps out of the helicopter. Assume that the helicopter is in free fall after its engine is shut off, and ignore the effects of air resistance. (a) What is the maximum height above ground reached by the helicopter? (b) Powers deploys a jet pack strapped on his back 7.0 s after leaving the helicopter, and then he has a constant downward acceleration with magnitude 2.0 m/s2. How far is Powers above the ground when the helicopter crashes into the ground?
Physics
1 answer:
denpristay [2]3 years ago
5 0

Answer:

a) h=250\ m

b) \Delta h=0.0835\ m

Explanation:

Given:

  • upward acceleration of the helicopter, a=5\ m.s^{-2}
  • time after the takeoff after which the engine is shut off, t_a=10\ s

a)

<u>Maximum height reached by the helicopter:</u>

using the equation of motion,

h=u.t+\frac{1}{2} a.t^2

where:

u = initial velocity of the helicopter = 0 (took-off from ground)

t = time of observation

h=0+0.5\times 5\times 10^2

h=250\ m

b)

  • time after which Austin Powers deploys parachute(time of free fall), t_f=7\ s
  • acceleration after deploying the parachute, a_p=2\ m.s^{-2}

<u>height fallen freely by Austin:</u>

h_f=u.t_f+\frac{1}{2} g.t_f^2

where:

u= initial velocity of fall at the top = 0 (begins from the max height where the system is momentarily at rest)

t_f= time of free fall

h_f=0+0.5\times 9.8\times 7^2

h_f=240.1\ m

<u>Velocity just before opening the parachute:</u>

v_f=u+g.t_f

v_f=0+9.8\times 7

v_f=68.6\ m.s^{-1}

<u>Time taken by the helicopter to fall:</u>

h=u.t_h+\frac{1}{2} g.t_h^2

where:

u= initial velocity of the helicopter just before it begins falling freely = 0

t_h= time taken by the helicopter to fall on ground

h= height from where it falls = 250 m

now,

250=0+0.5\times 9.8\times t_h^2

t_h=7.1429\ s

From the above time 7 seconds are taken for free fall and the remaining time to fall with parachute.

<u>remaining time,</u>

t'=t_h-t_f

t'=7.1428-7

t'=0.1428\ s

<u>Now the height fallen in the remaining time using parachute:</u>

h'=v_f.t'+\frac{1}{2} a_p.t'^2

h'=68.6\times 0.1428+0.5\times 2\times 0.1428^2

h'=9.8165\ m

<u>Now the height of Austin above the ground when the helicopter crashed on the ground:</u>

\Delta h=h-(h_f+h')

\Delta h=250-(240.1+9.8165)

\Delta h=0.0835\ m

You might be interested in
Is a balance scale used to describe how much matter is in an object
gtnhenbr [62]
It's used to measure the mass or weight of an object
7 0
3 years ago
Read 2 more answers
Waves travel as "packets" of several waves. in these "packets," a wave travels at __________.
madam [21]
A. the same speed as the wave energy 
4 0
3 years ago
Read 2 more answers
How would the body be affected if red blood cells and low levels of homoglobinHow would the
JulsSmile [24]
Low blood pressure. The person could faint and have an irregular heartbeat.
6 0
3 years ago
13. Describe the molecules of a solid in terms of kinetic energy.
Y_Kistochka [10]
The kinetic molecular theory of matter states that: ... Molecules in the solid phase have the least amount of energy, while gas particles have the greatest amount of energy. The temperature of a substance is a measure of the average kinetic energy of the particles.
3 0
2 years ago
Jupiter is made of gas(like Saturn, Uranus and Neptune). What would happen to the strength of gravity if you
garik1379 [7]

Answer:

a) The strength of gravity decreases if one moved away from Jupiter

b) The strength of gravity increases if one fell into Jupiter

Explanation:

The gravitational attraction is given by Newton law of gravitation as follows;

Force \ (strength) \ of \ gravity = \dfrac{G \times M \times m}{R^2}

Where;

G = The universal gravitational constant = 6.67408 × 10⁻¹¹ m³/(kg·s²)

M = The mass of Jupiter

m = The mass of the nearby body

R = The distance between the centers of Jupiter and the body

From the equation, we have that the gravitational strength varies inversely with the square of the separation distance between two bodies

Therefore, as one moves away, R increases, and the strength of gravity reduces

Similarly as the body falls into Jupiter, R, reduces the gravitational strength increases.

7 0
3 years ago
Other questions:
  • What is the difference between polarized light and unpolarized light?
    14·1 answer
  • The passage of electricity is caused by the movement of what
    14·2 answers
  • Based on the information in the chart, which of these acids would be the best conductor of electricity?
    9·1 answer
  • The "steam" above a freshly made cup of instant coffee is really water vapor droplets condensing after evaporating from the hot
    15·1 answer
  • What’s are some forms of chemical energy
    8·1 answer
  • 44. Belly-flop Bernie dives from atop a tall flagpole into a swimming pool below. His potential energy at the top is 10,000 J (r
    10·1 answer
  • Please help me-. it’s part of my major grade.
    7·2 answers
  • 1. A silicon BJT is connected as shown in Fig 1, where RC = 3.6 k 2. VBE = 0.8 V. (10%)
    6·1 answer
  • Convert 75.0 degrees Celsius into Fahrenheit
    12·1 answer
  • During a __________ year period starting at about 4.5 billion years ago, bits and pieces of metal-rich particles, rocks, and ice
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!