Answer:
When broadcasting live on social, keep in mind that the best broadcasts are ones that feel like a conversation between brand and viewer. Unlike other forms of social video, you’ll get more views and engagement if your video
is longer and repeats key points.
Explanation:
When broadcasting live on social media, one should be live for long because in this way one can get more views as audience will increase with time. There should be an interaction with the audience like answering their questions which they write in the comments section. These comments and views will make this video to the top of news feed. Secondly the most important thing is the content of the video. One must focus on the information or knowledge he/she wants to convey and must repeat the key points again and again so that one who has missed the important points will be able catch them later.
Answer:
One way to test the hypothesis is to create two waves, one in the air and one on the ground at the same time. One of them for the elephant to get closer and another for the elephants to move away. Observe the reaction of the animal and with this we know which sound came first.
Explanation:
This hypothesis is based on the fact that the speed of sound in air is v = 343 m / s with a small variation with temperature.
The speed of sound in solid soil is an average of the speed of its constituent media, giving values between
wood 3900 m / s
concrete 4000 m / s
fabrics 1540 m / s
earth 5000 m / s wave S
ground 7000 m / s P wave
we can see that the speed on solid earth is an order of magnitude greater than in air.
One way to test the hypothesis is to create two waves, one in the air and one on the ground at the same time. One of them for the elephant to get closer and another for the elephants to move away. Observe the reaction of the animal and with this we know which sound came first.
From the initial information, the wave going through the ground should arrive first.
Answer:

Explanation:
As we know that electric field due to infinite line charge distribution at some distance from it is given as

now we need to find the electric field at mid point of two wires
So here we need to add the field due to two wires as they are oppositely charged
Now we will have

now plug in all data



now we have



The final velocity of skater 1 is 3.7 m/s to the right. The right option is O A. 3.7 m/s to the right.
<h3>What is velocity?</h3>
Velocity can be defined as the ratio of the displacement and time of a body.
To calculate the final velocity of Skater 1 we use the formula below.
Formula:
- mu+MU = mv+MV............ Equation 1
Where:
- m = mass of the first skater
- M = mass of the second skater
- u = initial velocity of the first skater
- U = initial velocity of the second skater
- v = final velocity of the first skater
- V = final velocity of the second skater.
make v the subject of the equation.
- v = (mu+MU-MV)/m................ Equation 2
Note: Let left direction represent negative and right direction represent positive.
From the question,
Given:
- m = 105 kg
- u = -2 m/s
- M = 71 kg
- U = 5 m/s
- V = -3.4 m/s.
Substitute these values into equation 2
- v = [(105×(-2))+(71×5)-(71×(-3.4))]/105
- v = (-210+355+241.4)/105
- v = 386.4/105
- v = 3.68 m/s
- v ≈ 3.7 m/s
Hence, the final velocity of skater 1 is 3.7 m/s to the right. The right option is O A. 3.7 m/s to the right.
Learn more about velocity here: brainly.com/question/25749514
The period of one full swing depends on the length of the pendulum and on gravity. The period of each full swing would be longer on the moon, with less gravity.
The rotation of the plane of the swings doesn't depend on the length of the string OR on gravity. It only depends on the latitude of the place where the pendulum hangs, and the rotation period of the body it's located on.
On Earth, it's (24 hours)/(sine of latitude).
On the moon, it would be (27.32 days)/(sine of latitude).