With the switch open, there's no current in the circuit, and therefore
no voltage drop across any of the dissipative elements (the resistor
or the battery's internal impedance). So the entire battery voltage
appears across the switch, and the voltmeter reads 12.0V .
There is one mistake in the question.The Correct question is here
A cat falls from a tree (with zero initial velocity) at time t = 0. How far does the cat fall between t = 1/2 and t = 1 s? Use Galileo's formula v(t) = −9.8t m/s.
Answer:
y(1s) - y(1/2s) = - 3.675 m
The cat falls 3.675 m between time 1/2 s and 1 s.
Explanation:
Given data
time=1/2 sec to 1 sec
v(t)=-9.8t m/s
To find
Distance
Solution
As the acceleration as first derivative of velocity with respect to time
So
acceleration(-g)= dv/dt
Solve it
dv = a dt
dv = -g dt
v - v₀ = -gt
v= dy/dt
dy = v dt
dy = ( v₀ - gt ) dt
y(1s) - y(1/2s) = ( v₀ ) ( 1 - 1/2 ) - ( g/2 )[ ( t1)² -( t1/2s )² ]
y(1s) - y(1/2s) = ( - 9.8/2 ) [ ( 1 )² - ( 1/2 )² ]
y1s - y1/2s = ( - 4.9 m/s² ) ( 3/4 s² )
y(1s) - y(1/2s) = - 3.675 m
The cat falls 3.675 m between time 1/2 s and 1 s.
Answer:
If the temperature of the air in the balloon is less than the temperature of the air surrounding the balloon then the balloon will appear slightly deflated because of the difference in temperature.
As the temperature of the air in the balloon reaches the surrounding air temperature, then the balloon will appear to be fully inflated because the temperature of the air in the balloon is the same as the surrounding air temperature.
Answer:
Kinetic energy is energy possessed by a body by virtue of its movement. Potential energy is the energy possessed by a body by virtue of its position or state. While kinetic energy of an object is relative to the state of other objects in its environment, potential energy is completely independent of its environment.
Both energies are related to motion.
Explanation:
Answer:
The minimum speed required is 5.7395km/s.
Explanation:
To escape earth, the kinetic energy of the asteroid must be greater or equal to its gravitational potential energy:

or

where
is the mass of the asteroid,
is its distance form earth's center,
is the mass of the earth, and
is the gravitational constant.
Solving for
we get:

putting in numerical values gives


in kilometers this is

Hence, the minimum speed required is 5.7395km/s.