Equilibrium force is the force that will keep the small
mass in place, hence no movement must be made. So we know that 32 N of force is
acted towards the positive direction so +32 N. Which is counteracted by 26 N
force so:
32 N – 26 N = 6 N (positive)
Since positive 6 is left, therefore this must be acted by
an equilibrant negative 6 N.
Answer:
<span>- 6 N </span>
Answer:
8.8 m and 52.5 m
Explanation:
The vertical component and horizontal component of water velocity leaving the hose are


Neglect air resistance, vertically speaking, gravitational acceleration g = -9.8m/s2 is the only thing that affects water motion. We can find the time t that it takes to reach the blaze 10m above ground level



t = 3.49 or t = 0.58
We have 2 solutions for t, one is 0.58 when it first reach the blaze during the 1st shoot up, the other is 3.49s when it falls down
t is also the times it takes to travel across horizontally. We can use this to compute the horizontal distance between the fire-fighters and the building


Answer:
Therefore,
The speed of the wave on the longer wire is 95 m/s.
Explanation:
Given:
For Short wire, speed is

Let length of Short and Longer wire be
such that

To Find:
Speed on the longer wire
Solution:
The speed of a pulse or wave on a string under tension can be found with the equation,

Where,
= Tension on the wire
L = Length of Sting
m = mass of String
So here we have,
= same

Therefore,
......equation ( 1 )
And
.......equation ( 2 )
Dividing equation 1 by equation 2 and on Solving we get

Therefore,

Therefore,
The speed of the wave on the longer wire is 95 m/s.
A. 0.25 terabytes
b. 2.5e + 17
Answer:
Explanation:
Given
In R-L-C circuit frequency is very high
Inductive Reactance for inductor is given by 
Inductive Reactance for Capacitor is given by 
as frequency becomes too high then
will become very large and and
will be approximately zero .
In other words inductor behave as a very high resistance and Capacitor behaves as very small resistance