1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stiv31 [10]
3 years ago
14

Sayid made a chart listing data of two colliding objects. A 5-column table titled Collision: Two Objects Stick Together with 2 r

ows in the first 3 columns and 1 row in the last 2 columns. The first column labeled Object has entries X, Y. The second column labeled Mass before Collision (kilograms) has entries 300, 100. The third column labeled Velocity before Collision (meters per second) has entries 10, negative 6. The fourth column labeled Mass after Collision (kilograms) has entry 400. The fifth column labeled Velocity after Collision (meters per second) has entry ?. According to the law of conservation of momentum, what is the missing value in the chart? 4 6 10 16
Physics
2 answers:
Alborosie3 years ago
7 0

Answer:

6 m/s is the missing final velocity

Explanation:

From the data table we extract that there were two objects (X and Y) that underwent an inelastic collision, moving together after the collision as a new object with mass equal the addition of the two original masses, and a new velocity which is the unknown in the problem).

Object X had a mass of 300 kg, while object Y had a mass of 100 kg.

Object's X initial velocity was positive (let's imagine it on a horizontal axis pointing to the right) of 10 m/s. Object Y had a negative velocity (imagine it as pointing to the left on the horizontal axis) of -6 m/s.

We can solve for the unknown, using conservation of momentum in the collision: Initial total momentum = Final total momentum (where momentum is defined as the product of the mass of the object times its velocity.

In numbers, and calling P_{xi} the initial momentum of object X and P_{yi} the initial momentum of object Y, we can derive the total initial momentum of the system: P_{total}_i=P_{xi}+P_{yi}= 300*10 \frac{kg*m}{s} -100*6\frac{kg*m}{s} =\\=(3000-600 )\frac{kg*m}{s} =2400 \frac{kg*m}{s}

Since in the collision there is conservation of the total momentum, this initial quantity should equal the quantity for the final mometum of the stack together system (that has a total mass of 400 kg):

Final momentum of the system: M * v_f=400kg * v_f

We then set the equality of the momenta (total initial equals final) and proceed to solve the equation for the unknown(final velocity of the system):

2400 \frac{kg*m}{s} =400kg*v_f\\\frac{2400}{400} \frac{m}{s} =v_f\\v_f=6 \frac{m}{s}

Vinil7 [7]3 years ago
7 0

Answer:

B

Explanation:

You might be interested in
What is v^2=0.05-4.9 please i need this asap​
Margaret [11]

Answer:

v =2.02

Explanation:

v^2=0.05-4.9

v^2=-4.85

square root both side

v=2.02

^^^^this is a not a perfect square  

7 0
3 years ago
WHAT DOES DENSITY HAVE TO DO WITH PLATE TECTONICS?<br> Explain
Korvikt [17]

Answer: The reason for the differences in density is the composition of rock in the plates. When two plates come in contact with each other through plate tectonics, scientists can use the density of the plates to predict what will happen. Whichever plate is more dense will sink, and the less dense plate will float over it.

Explanation:

Hope this helps ( not copied and pasted, this answer was done by me so I don't know if it's good or not)

5 0
3 years ago
The weather conditions
bixtya [17]

Answer:

ok confusion but we could figure it out right

Explanation:

<h3>dhdjhdndnd but its fine how was your day tho </h3>
4 0
3 years ago
A spring with spring constant of 34 N/m is stretched 0.12 m from its equilibrium position. How much work must be done to stretch
Nesterboy [21]

Answer:0.253Joules

Explanation:

First, we will calculate the force required to stretch the string. According to Hooke's law, the force applied to an elastic material or string is directly proportional to its extension.

F = ke where;

F is the force

k is spring constant = 34N/m

e is the extension = 0.12m

F = 34× 0.12 = 4.08N

To get work done,

Work is said to be done if the force applied to an object cause the body to move a distance from its initial position.

Work done = Force × Distance

Since F = 4.08m, distance = 0.062m

Work done = 4.08 × 0.062

Work done = 0.253Joules

Therefore, work done to stretch the string to an additional 0.062 m distance is 0.253Joules

8 0
4 years ago
A 0.40 kg mass hangs on a spring with a spring constant of 12 N/m. The system oscillated with a constant amplitude of 12 cm. Wha
Vaselesa [24]

Answer:

The maximum acceleration of the system is 359.970 centimeters per square second.

Explanation:

The motion of the mass-spring system is represented by the following formula:

x(t) = A\cdot \cos (\omega \cdot t + \phi)

Where:

x(t) - Position of the mass with respect to the equilibrium position, measured in centimeters.

A - Amplitude of the mass-spring system, measured in centimeters.

\omega - Angular frequency, measured in radians per second.

t - Time, measured in seconds.

\phi - Phase, measured in radians.

The acceleration experimented by the mass is obtained by deriving the position equation twice:

a (t) = -\omega^{2}\cdot A \cdot \cos (\omega\cdot t + \phi)

Where the maximum acceleration of the system is represented by \omega^{2}\cdot A.

The natural frequency of the mass-spring system is:

\omega = \sqrt{\frac{k}{m} }

Where:

k - Spring constant, measured in newtons per meter.

m - Mass, measured in kilograms.

If k = 12\,\frac{N}{m} and m = 0.40\,kg, the natural frequency is:

\omega = \sqrt{\frac{12\,\frac{N}{m} }{0.40\,kg} }

\omega \approx 5.477\,\frac{rad}{s}

Lastly, the maximum acceleration of the system is:

a_{max} = \left(5.477\,\frac{rad}{s})^{2}\cdot (12\,cm)

a_{max} = 359.970\,\frac{cm}{s^{2}}

The maximum acceleration of the system is 359.970 centimeters per square second.

7 0
3 years ago
Other questions:
  • Assume that a person bouncing a ball represents a closed system. Which statement best describes how the amounts of the ball's po
    8·1 answer
  • You are doing an experiment to determine how many passengers would fit into a full-sized plane. If a scale model plane has space
    7·2 answers
  • How to find moment of inertia of hemisphere
    6·1 answer
  • Scouts at a camp shake the rope bridge they have just crossed and observe the wave crests to be 9.70 m apart. If they shake the
    9·1 answer
  • A small rock is thrown vertically upward with a speed of 22.0 m/s from the edge of the roof of a 30.0-m-tall building. The rock
    8·1 answer
  • How much heat does it take to raise the temperature of 7.0 kg of water from
    10·2 answers
  • You are a scientist trying to develop a technology that can be used to power wrist watches. Which type of electromagnetic wave w
    5·2 answers
  • what is the kinetic energy of a hammer that starts from rest and decreases its potential energy by 10k?
    14·1 answer
  • What happens when the speed of an object increase without change in height in the potential energy?
    14·1 answer
  • A parallel plate air capacitor has a capacitance of 10 to the power -9. What potential difference is required for a charge of 5×
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!