1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
meriva
3 years ago
6

An undamped spring-mass system contains a mass that weighs and a spring with spring constant . It is suddenly set in motion at b

y an external force of . Determine the position of the mass at any time . Use as the acceleration due to gravity. Pay close attention to the units.

Physics
1 answer:
balandron [24]3 years ago
8 0

Answer:

Explanation:

When all other forces acting on the mass in a damped mass-spring system are grouped together into one term denoted by F(t), the differential equation describing

motion is

Mx''+ βx' + kx = F(t).

Note for an undamped system

β=0,

Then, the differential equation becomes

Mx'' + kx = F(t).

The force is in the form

F=Fo•Sinωo•t

Let solved for the homogeneous or complementary solution, I.e f(t) = 0

Using D operator

MD² + k = 0

MD²=-k

D²=-k/M

Then, D= ±√(-k/m)

D=±√(k/m) •i

So we have a complex root

Therefore, the solution is

x= C1•Cos[√(k/m)t] + C2•Sin[√(k/m)]

This is simple harmonic motion that once again we prefer to write in the form

x(t) = A•Sin[ √(k/M)t + φ]

Where A=√(C1²+C2²)

and angle φ is defined by the equations

sin φ = C1/A and cos φ = C2/A.

Quantity √(k/M), often denoted by ω, is called the angular frequency.

This is called the natural frequency (ωn) of the system

ωn=√(k/M)

ωn²= k/M

Now, for particular solution

Xp=DSinωo•t

Xp' = Dωo•Cosωo•t

Xp"=-Dωo²•Sinωo•t

Now substituting this into

Mx'' + kx = F(t).

M(-Dωo²•Sinωo•t) + k(DSinωo•t)=FoSinωo•t

Now, let solve for D

D(-Mωo²•Sinωo•t +kSinωo•t) = FoSinωo•t

D=Fo•Sinωo•t/(-Mωo²•Sinωo•t +kSinωo•t)

D=Fo•Sinωo•t / Sinωo•t(-Mωo²+k)

D=Fo / (-Mωo²+k)

D=Fo / (k-Mωo²)

Divide through by k

D=Fo/k ÷ (1 -Mωo²/k)

Note from above

ωn²= k/M

Therefore,

D=Fo/k ÷ (1-ωo²/ωn²)

D=Fo/k ÷ [1-(ωo/ωn)²]

Then,

Xp=DSinωo•t

Xp=(Fo/k ÷ [1-(ωo/ωn)²]) Sinωo•t

Then the general solution is the sum of the homogeneous solution and particular solution

Xg(t)=(Fo/k ÷ [1-(ωo/ωn)²]) Sinωo•t + A•Sin[ √(k/M)t + φ]

Check attachment for the graph of homogeneous, particular and general solution.

Also, check for better way of writing the equations.

You might be interested in
At which moon position would a person on Earth see the entire half of the moon(full-moon)?
jeka94
Sun-earth-moon in a straight line. Earth in the 'middle'.
3 0
3 years ago
Read 2 more answers
I will mark brainliest!
Dvinal [7]
Normally a storm surge.

Experience: I lived through Andrew and Wilma

3 0
3 years ago
Read 2 more answers
You drop a stone down a well that is 19.60 m deep. How long is it before you hear the splash? The speed of sound in air is 343 m
ki77a [65]

So, the time needed before you hear the splash is approximately <u>2.06 s</u>.

<h3>Introduction</h3>

Hi ! In this question, I will help you. This question uses two principles, namely the time for an object to fall freely and the time for sound to propagate through air. When moving in free fall, the time required can be calculated by the following equation:

\sf{h = \frac{1}{2} \cdot g \cdot t^2}

\sf{\frac{2 \cdot h}{g} = t^2}

\boxed{\sf{\bold{t = \sqrt{\frac{2 \cdot h}{g}}}}}

With the following condition :

  • t = interval of the time (s)
  • h = height or any other displacement at vertical line (m)
  • g = acceleration of the gravity (m/s²)

Meanwhile, for sound propagation (without sound reflection), time propagates is the same as the quotient of distance by time. Or it can be formulated by :

\boxed{\sf{\bold{t = \frac{s}{v}}}}

With the following condition :

  • t = interval of the time (s)
  • s = shift or displacement (m)
  • v = velocity (m/s)

<h3>Problem Solving</h3>

We know that :

  • h = height or any other displacement at vertical line = 19.6 m
  • g = acceleration of the gravity = 9.8 m/s²
  • v = velocity = 343 m/s

What was asked :

  • \sf{\sum t} = ... s

Step by step :

  • Find the time when the object falls freely until it hits the water. Save value as \sf{\bold{t_1}}

\sf{t_1 = \sqrt{\frac{2 \cdot h}{g}}}

\sf{t_1 = \sqrt{\frac{2 \cdot \cancel{19.6} \:_2}{\cancel{9.8}}}}

\sf{t_1 = \sqrt{4}}

\sf{\bold{t_1 = 2 \: s}}

  • Find the time when the sound propagate through air. Save value as \sf{\bold{t_2}}

\sf{t_2 = \frac{h}{v}}

\sf{t_2 = \frac{19.6}{343}}

\sf{\bold{t_2 \approx 0.06 \: s}}

  • Find the total time \sf{\bold{\sum t}}

\sf{\sum t = t_1 + t_2}

\sf{\sum t \approx 2 + 0.06}

\boxed{\sf{\sum t \approx 2.06}}

<h3>Conclusion</h3>

So, the time needed before you hear the splash is approximately 2.06 s.

3 0
3 years ago
An object moves 360 km in 2 hours calculate its speed into km/h and m/s​
erik [133]

Explanation:

Speed= Distance / time

Speed= 360/2

= 180 km/h

Speed= 180 × 5/18

= 50 m/s

hope it helps

5 0
3 years ago
Read 2 more answers
A 20N force acts for 5.0 s on a 4.0 kg mass at rest. The magnitude of the velocity (in m/s) of the mass after the force acts is?
Misha Larkins [42]
Acceleration a = F/m = 20/4 = 5 m/s^2

v = a x t = 5 × 5 =25 m/s
6 0
3 years ago
Other questions:
  • A .5 kg air puck moves to the right at 3 m/s, colliding with a 1.5kg air puck that is moving to the left at 1.5 m/s.
    13·1 answer
  • suppose a ball had a potential energy of 5 j when you dropped it. What would be its kinetic energy just as it hit the ground. (i
    10·1 answer
  • Why are Mars and Europa the top targets for the study of astrobiology?
    6·1 answer
  • What can you do to promote Americanism and love of our country?
    7·1 answer
  • This is a group of elements with few valence electrons that conducts heat and electricity.
    14·1 answer
  • Which sequence shows all the colors of visible light arranged from shortest to longest wavelength?
    5·2 answers
  • In the two-stage cooling method, what is the maximum amount of time allowed to cool food from 135 degrees F or more to 70 degree
    15·1 answer
  • An astronaut floating in space throws a wrench forward with the force of 10 N.
    11·2 answers
  • A 7750 kg space probe, moving nose-first toward Jupiter at 179 m/s relative to the Sun, fires its rocket engine, ejecting 72.0 k
    6·1 answer
  • when a metal sphere is dropped in to a tall cylinder containing liquid its acceleration is g÷2 (gravity over 2) show that : dens
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!