Answer:
The approximate bond angle around the central carbon atom in acrolein is 120°.
Explanation:
The structure of acrolein is shown in the attachment. From the structure, we can deduce that the central carbon atom is in an sp2 hybridization (Atoms with a double bond hybridize in an sp2 fashion).
Atoms with sp2 hybridization have trigonal planar geometry, in this kind of hybridization, bonds are oriented the farthest away possible from each other, to minimize overlapping and the angle that allows that is 120°.
Explanation:
The radial distribution function gives the probability density for an electron to be found anywhere on the surface of a sphere located a distance r from the proton. Since the area of a spherical surface is 4πr2, the radial distribution function is given by 4πr2R(r)∗R(r).
I
Answer:
After 2.0 minutes the concentration of N2O is 0.3325 M
Explanation:
Step 1: Data given
rate = k[N2O]
initial concentration of N2O of 0.50 M
k = 3.4 * 10^-3/s
Step 2: The balanced equation
2N2O(g) → 2 N2(g) + O2(g)
Step 3: Calculate the concentration of N2O after 2.0 minutes
We use the rate law to derive a time dependent equation.
-d[N2O]/dt = k[N2O]
ln[N2O] = -kt + ln[N2O]i
⇒ with k = 3.4 *10^-3 /s
⇒ with t = 2.0 minutes = 120s
⇒ with [N2O]i = initial conc of N2O = 0.50 M
ln[N2O] = -(3.4*10^-3/s)*(120s) + ln(0.5)
ln[N2O] = -1.101
e^(ln[N2O]) = e^(-1.1011)
[N2O} = 0.3325 M
After 2.0 minutes the concentration of N2O is 0.3325 M
Answer:
STP of 1atm and 273 k for pressure
on the left side of the arrow